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In this supplementary material, we provide,
1. Visualizations of Values from Eq. (3) in the manuscript in Sec. 1;
2. Sensitive analysis regarding the hyper-parameters in Sec. 2;
3. Comparison regarding the setting of combing logit and features in Sec. 3;
4. Evaluations on the DomainBed benchmark using the ResNet50 backbone in Sec. 4;
5. Detailed results in the DomainBed benchmark in Sec. 5.

1. Visualizations of Values from Eq. (3)
In this section, we plot the changes in the sample-to-center-difference (SCD) values for rationales, features, and logits in

Fig. 1 (a)-(c) in settings of with and without Linv . Our observations are as follows: (1) Using Linv tends to decrease the three
SCD values, which is significant compared to disabling Linv . The results indicate that ERM fails to summarize shared clues
to make a robust decision for samples from the same class, explaining why it is less effective in generalizing than ours. (2)
When compared to the case of rationales, features, and logits, the SCD values exhibit larger variances throughout iterations,
indicating that our Linv allows for some flexibility, enabling features and logits to deviate from their centers. This observation
aligns with our suggestion: the contribution of each feature dimension should be jointly modulated by both the feature itself
and its corresponding classifier weight.

We perform vectorization on rationale matrices for different samples and use t-SNE for dimension reduction. In Fig. 1
(d), we show that, rationales from different domains will be mixed together when with Linv , indicating the adopted Linv can
ensure using the same rational for samples from the same class despite the varying domains.

2. Sensitive Analysis Regarding the Hyper-Parameter Settings
Our implementation involves two hyper-parameters: the momentum value m in Eq. (4) and the positive weight α in Eq. (5)

in the manuscript. This section evaluates our method with different settings of these two hyper-parameters by conducting
experiments on the widely-used PACS dataset [13] with a ResNet18 backbone [9] using the same setting illustrated in Sec.
4.1 in the manuscript, similar to that in [5]. Note we fix the value for one hyper-parameter when analyzing another. Results
are listed in Table 1. We observe that our method performs consistently well when the hyper-parameter m in the range of
[0.0001, 0.1] and α in the range of [0.001, 0.1].

3. Comparisons with the Setting Combining Logit and Feature
As stated in the manuscript, analyzing the decision-making process from either the perspective of feature or logit has

intrinsic limitations. Specifically, since the classifier is not taken into account, the model may emphasize heavily on feature
elements that with large values but correspond to small weights in the classifier if only consider the feature. Although logit can
ease the issue to a certain extent, it only provides a coarse representation for the decision-making process, thus difficult to
ensure robust outputs. One may wonder if the combination of feature and logit could avoid the limitation of each other and
lead to certain improvements. To answer this question, we conduct further analysis by substituting the rationale invariance
constraint with the regularization term that enforces invariance for both the feature and logit (i.e. W/ fea. & log.), which
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Figure 1. Plots of different terms by iterations (i.e. Values of Eq. (3), feature, and logit differences in (a)-(c), yellow and blue lines are
smoothed and original data), and rational matrices after training (i.e. (d)) from ERM (1st row) and our model (2nd row).
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Table 1. Evaluations regarding different hyper-parameter (i.e. m in Eq. (4) and α in Eq. (5) from the manuscript) settings. We fix one
parameter and tune another when conducting the experiments which are examined in PACS [13] with the leave-one-out training-test strategy.
The reported accuracies (%) and standard deviations are computed from 60 trials in each target domain.

hyper-parameters art cartoon photo sketch avg

α ∈ [0.001, 0.1]

m = 0 82.3 ± 0.1 73.4 ± 1.2 95.0 ± 0.5 75.8 ± 0.8 81.6 ± 0.4
m = 0.0001 82.3 ± 0.5 76.0 ± 0.5 94.6 ± 0.4 75.9 ± 1.1 82.2 ± 0.4
m = 0.001 82.1 ± 1.4 75.5 ± 1.2 94.9 ± 0.5 76.5 ± 0.3 82.2 ± 0.5
m = 0.01 82.9 ± 0.8 76.2 ± 1.2 94.6 ± 0.6 75.9 ± 1.5 82.4 ± 5.9
m = 0.1 82.2 ± 0.7 75.9 ± 0.9 95.3 ± 0.2 78.1 ± 0.9 82.9 ± 5.9
m = 1 81.6 ± 1.9 76.2 ± 0.6 94.9 ± 0.4 75.3 ± 1.6 82.0 ± 0.3

m ∈ [0.0001, 0.1]

α = 0.0001 78.3 ± 0.6 74.2 ± 1.8 94.0 ± 0.4 76.4 ± 2.4 80.7 ± 0.8
α = 0.001 82.3 ± 0.5 74.7 ± 1.4 93.7 ± 0.8 75.5 ± 0.3 81.6 ± 0.4
α = 0.01 81.9 ± 1.0 75.0 ± 1.1 94.9 ± 0.3 75.7 ± 0.4 81.9 ± 0.1
α = 0.1 82.3 ± 0.8 76.2 ± 0.5 94.9 ± 0.4 76.4 ± 1.0 82.4 ± 0.4
α = 1 81.6 ± 0.7 74.0 ± 0.5 94.5 ± 0.3 73.5 ± 1.4 80.9 ± 0.2

reformulates Eq. (3) into Linv = 1
Nb

∑
k

∑
{n|yn=k}(‖zn − zk‖2 + ‖on − ok‖2), where z, o, z and o are the feature, logit,

and their corresponding momentum updated mean values, respectively. We use the same setting as the original design and test
the model in the widely-used PACS dataset [13] to evaluate its effectiveness.

Experimental results are listed in Table 2. We note that combining the feature and logit can lead to improvements for
both the two invariance constraints (i.e. W/ fea. and W/ log.) in almost all target domains. This finding is not surprising
since the combined setting considers both the classifier and the feature, thereby mitigating some of the limitations of the
two individual settings. However, our rationale invariance regularization still outperforms the combined approach. This is
because our rationale concept provides a direct characterization of the decision-making process, encompassing the fine-grained
representations of both the features and the weights in the classifier, while the latter can only be coarsely represented in the
combined setting.

4. Results in the DomainBed Benchmark with the ResNet50 Backbone
To comprehensively examine the effectiveness of the proposed method, we also evaluate our method and the baseline ERM

and the top-3 arts in Table 1 in the manuscript using the larger ResNet50 backbone [9]. Results are listed in Table 3, which
are directly cited from [11]. We note that our method surpasses the baseline ERM model in all datasets and leads by 1.4 in
average, while the top 3 methods of the compared models (i.e. CORAL [24], SagNet [17], and SelfReg [11]) lead their ERM
model by 1.3, 0.9 and 0.9 in average. These results indicate that our method can consistently improve the baseline model and
perform favorably against existing arts when implemented with a larger ResNet50 backbone.



Table 2. Comparison between different invariance constraint and mean value updating schemes in the unseen domain from the PACS
benchmark [13]. Here the “Z”, “O”, and “R” denotes the feature-invariance, logits-invariance, and the proposed rationale invariance
constraints. The reported accuracies (%) and standard deviations are computed from 60 trials in each target domain.

Models Invariance Target domain Avg.
Z O R Art Cartoon Photo Sketch

ERM − − − 78.0 ± 1.3 73.4 ± 0.8 94.1 ± 0.4 73.6 ± 2.2 79.8 ± 0.4
W/ fea. X − − 82.3 ± 0.4 74.3 ± 1.0 94.3 ± 0.4 73.6 ± 1.3 81.1 ± 0.5
W/ log. − X − 81.9 ± 0.5 75.5 ± 0.5 94.8 ± 0.2 73.9 ± 1.3 81.5± 0.3
W/ fea & log. X X − 82.2 ± 1.0 75.8 ± 0.6 95.6 ± 0.4 74.7 ± 0.8 82.1 ± 0.4
Ours − − X 82.4 ± 1.0 76.7 ± 0.6 95.3 ± 0.1 76.7 ± 0.3 82.8 ± 0.3

Table 3. Average accuracies on the DomainBed [8] benchmark using the ResNet50 [9] backbones. Results without † are directly cited from a
previous work [11]. Improve. denotes the average improvements with respect to the corresponding ERM model.

PACS VLCS OfficeHome TerraInc DomainNet Avg. Improve.
ERM [25] 85.5 ± 0.2 77.5 ± 0.4 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3 -
IRM [1] 83.5 ± 0.8 78.5 ± 0.5 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 61.2 -2.1
GroupGRO [22] 84.4 ± 0.8 76.7 ± 0.6 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 60.7 -2.6
Mixup [27] 84.6 ± 0.6 77.4 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 63.4 +0.1
MLDG [14] 84.9 ± 1.0 77.2 ± 0.4 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 63.6 +0.3
CORAL [24] 86.2 ± 0.3 78.8 ± 0.6 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 64.6 +1.3
MMD [15] 84.6 ± 0.5 77.5 ± 0.9 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 58.8 -4.5
DANN [7] 83.6 ± 0.4 78.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 62.6 -0.7
CDANN [16] 82.6 ± 0.9 77.5 ± 0.1 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 62.0 -1.3
MTL [3] 84.6 ± 0.5 77.2 ± 0.4 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 62.9 -0.4
SagNet [17] 86.3 ± 0.2 77.8 ± 0.5 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 64.2 +0.9
ARM [28] 85.1 ± 0.4 77.6 ± 0.3 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 61.7 -1.6
VREx [12] 84.9 ± 0.6 78.3 ± 0.2 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 61.9 -2.4
RSC [10] 85.2 ± 0.9 77.1 ± 0.5 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 62.7 -0.6
SelfReg [11] 85.6 ± 0.4 77.8 ± 0.9 67.9 ± 0.7 47.0 ± 0.3 42.8 ± 0.0 64.2 +0.9

ERM† [25] 83.1 ± 0.9 77.7 ± 0.8 65.8 ± 0.3 46.5 ± 0.9 40.8 ± 0.2 62.8 -
Fish† [23] 84.0±0.3 78.6±0.1 67.9±0.5 46.6±0.4 40.6±0.2 63.5 +0.7
CORAL† [24] 85.0±0.4 77.9±0.2 68.8±0.3 46.1±1.2 41.4±0.0 63.9 +1.1
SD† [19] 84.4±0.2 77.6±0.4 68.9±0.2 46.4±2.0 42.0±0.2 63.9 +1.1
Ours† 84.7 ± 0.2 77.8 ± 0.4 68.6 ± 0.2 47.8 ± 1.1 41.9 ± 0.3 64.2 +1.4

5. Detailed Results in the DomainBed Benchmark [8]
this section presents the average accuracy in each domain from different datasets. As shown in Table 4, 5, 6, 7, and

8, these results are detailed illustrations of the results in Table 1 in our manuscript. For all the experiments, we use the
“training-domain validate set” as the model selection method. A total of 23 methods are examined for 60 trials in each unseen
domain, and all methods are trained with the leave-one-out strategy using the ResNet18 [9] backbones.

We note the MIRO [4] method performs inferior to other arts when evaluated in the PACS dataset, this is mainly because
their approach specifically enforces similarity between intermediate features from the model and that from the pretrained
backbone, which can be detrimental to the performance when there is a significant distribution shift between the target data
and samples used for pertaining. In this case, the distribution shift is particularly noticeable between data from the ‘cartoon’
and ‘sketch’ domains and real photos in imagenet that are adopted for pretraining.



Table 4. Average accuracies on the PACS [13] datasets using the default hyper-parameter settings in DomainBed [8].

art cartoon photo sketch Average
ERM [25] 78.0 ± 1.3 73.4 ± 0.8 94.1 ± 0.4 73.6 ± 2.2 79.8 ± 0.4
IRM [1] 76.9 ± 2.6 75.1 ± 0.7 94.3 ± 0.4 77.4 ± 0.4 80.9 ± 0.5
GroupGRO [22] 77.7 ± 2.6 76.4 ± 0.3 94.0 ± 0.3 74.8 ± 1.3 80.7 ± 0.4
Mixup [27] 79.3 ± 1.1 74.2 ± 0.3 94.9 ± 0.3 68.3 ± 2.7 79.2 ± 0.9
MLDG [14] 78.4 ± 0.7 75.1 ± 0.5 94.8 ± 0.4 76.7 ± 0.8 81.3 ± 0.2
CORAL [24] 81.5 ± 0.5 75.4 ± 0.7 95.2 ± 0.5 74.8 ± 0.4 81.7 ± 0.0
MMD [15] 81.3 ± 0.6 75.5 ± 1.0 94.0 ± 0.5 74.3 ± 1.5 81.3 ± 0.8
DANN [7] 79.0 ± 0.6 72.5 ± 0.7 94.4 ± 0.5 70.8 ± 3.0 79.2 ± 0.3
CDANN [16] 80.4 ± 0.8 73.7 ± 0.3 93.1 ± 0.6 74.2 ± 1.7 80.3 ± 0.5
MTL [3] 78.7 ± 0.6 73.4 ± 1.0 94.1 ± 0.6 74.4 ± 3.0 80.1 ± 0.8
SagNet [17] 82.9 ± 0.4 73.2 ± 1.1 94.6 ± 0.5 76.1 ± 1.8 81.7 ± 0.6
ARM [28] 79.4 ± 0.6 75.0 ± 0.7 94.3 ± 0.6 73.8 ± 0.6 80.6 ± 0.5
VREx [12] 74.4 ± 0.7 75.0 ± 0.4 93.3 ± 0.3 78.1 ± 0.9 80.2 ± 0.5
RSC [10] 78.5 ± 1.1 73.3 ± 0.9 93.6 ± 0.6 76.5 ± 1.4 80.5 ± 0.2
SelfReg [11] 82.5 ± 0.8 74.4 ± 1.5 95.4 ± 0.5 74.9 ± 1.3 81.8 ± 0.3
MixStyle [29] 82.6 ± 1.2 76.3 ± 0.4 94.2 ± 0.3 77.5 ± 1.3 82.6 ± 0.4
Fish [23] 80.9 ± 1.0 75.9 ± 0.4 95.0 ± 0.4 76.2 ± 1.0 82.0 ± 0.3
SD [19] 83.2 ± 0.6 74.6 ± 0.3 94.6 ± 0.1 75.1 ± 1.6 81.9 ± 0.3
CAD [21] 83.9 ± 0.8 74.2 ± 0.4 94.6 ± 0.4 75.0 ± 1.2 81.9 ± 0.3
CondCAD [21] 79.7 ± 1.0 74.2 ± 0.9 94.6 ± 0.4 74.8 ± 1.4 80.8 ± 0.5
Fishr [20] 81.2 ± 0.4 75.8 ± 0.8 94.3 ± 0.3 73.8 ± 0.6 81.3 ± 0.3
MIRO [4] 79.3 ± 0.6 68.1 ± 2.5 95.5 ± 0.3 60.6 ± 3.1 75.9 ± 1.4
Ours 82.4 ± 1.0 76.7 ± 0.6 95.3 ± 0.1 76.7 ± 0.3 82.8 ± 0.3

Table 5. Average accuracies on the VLCS [6] datasets using the default hyper-parameter settings in DomainBed [8].

Caltech LabelMe Sun VOC Average
ERM [25] 97.7 ± 0.3 62.1 ± 0.9 70.3 ± 0.9 73.2 ± 0.7 75.8 ± 0.2
IRM [1] 96.1 ± 0.8 62.5 ± 0.3 69.9 ± 0.7 72.0 ± 1.4 75.1 ± 0.1
GroupGRO [22] 96.7 ± 0.6 61.7 ± 1.5 70.2 ± 1.8 72.9 ± 0.6 75.4 ± 1.0
Mixup [27] 95.6 ± 1.5 62.7 ± 0.4 71.3 ± 0.3 75.4 ± 0.2 76.2 ± 0.3
MLDG [14] 95.8 ± 0.5 63.3 ± 0.8 68.5 ± 0.5 73.1 ± 0.8 75.2 ± 0.3
CORAL [24] 96.5 ± 0.3 62.8 ± 0.1 69.1 ± 0.6 73.8 ± 1.0 75.5 ± 0.4
MMD [15] 96.0 ± 0.8 64.3 ± 0.6 68.5 ± 0.6 70.8 ± 0.1 74.9 ± 0.5
DANN [7] 97.2 ± 0.1 63.3 ± 0.6 70.2 ± 0.9 74.4 ± 0.2 76.3 ± 0.2
CDANN [16] 95.4 ± 1.2 62.6 ± 0.6 69.9 ± 1.3 76.2 ± 0.5 76.0 ± 0.5
MTL [3] 94.4 ± 2.3 65.0 ± 0.6 69.6 ± 0.6 71.7 ± 1.3 75.2 ± 0.3
SagNet [17] 94.9 ± 0.7 61.9 ± 0.7 69.6 ± 1.3 75.2 ± 0.6 75.4 ± 0.8
ARM [28] 96.9 ± 0.5 61.9 ± 0.4 71.6 ± 0.1 73.3 ± 0.4 75.9 ± 0.3
VREx [12] 96.2 ± 0.0 62.5 ± 1.3 69.3 ± 0.9 73.1 ± 1.2 75.3 ± 0.6
RSC [10] 96.2 ± 0.0 63.6 ± 1.3 69.8 ± 1.0 72.0 ± 0.4 75.4 ± 0.3
SelfReg [11] 95.8 ± 0.6 63.4 ± 1.1 71.1 ± 0.6 75.3 ± 0.6 76.4 ± 0.7
MixStyle [29] 97.3 ± 0.3 61.6 ± 0.1 70.4 ± 0.7 71.3 ± 1.9 75.2 ± 0.7
Fish [23] 97.4 ± 0.2 63.4 ± 0.1 71.5 ± 0.4 75.2 ± 0.7 76.9 ± 0.2
SD [19] 96.5 ± 0.4 62.2 ± 0.0 69.7 ± 0.9 73.6 ± 0.4 75.5 ± 0.4
CAD [21] 94.5 ± 0.9 63.5 ± 0.6 70.4 ± 1.2 72.4 ± 1.3 75.2 ± 0.6
CondCAD [21] 96.5 ± 0.8 62.6 ± 0.4 69.1 ± 0.2 76.0 ± 0.2 76.1 ± 0.3
Fishr [20] 97.2 ± 0.6 63.3 ± 0.7 70.4 ± 0.6 74.0 ± 0.8 76.2 ± 0.3
MIRO [4] 97.5 ± 0.2 62.0 ± 0.5 71.3 ± 1.0 74.8 ± 0.6 76.4 ± 0.4
Ours 96.7 ± 0.5 63.2 ± 1.0 70.3 ± 0.8 73.4 ± 0.3 75.9 ± 0.3



Table 6. Average accuracies on the OfficeHome [26] datasets using the default hyper-parameter settings in DomainBed [8].

art clipart product real Average
ERM [25] 52.2 ± 0.2 48.7 ± 0.5 69.9 ± 0.5 71.7 ± 0.5 60.6 ± 0.2
IRM [1] 49.7 ± 0.2 46.8 ± 0.5 67.5 ± 0.4 68.1 ± 0.6 58.0 ± 0.1
GroupGRO [22] 52.6 ± 1.1 48.2 ± 0.9 69.9 ± 0.4 71.5 ± 0.8 60.6 ± 0.3
Mixup [27] 54.0 ± 0.7 49.3 ± 0.7 70.7 ± 0.7 72.6 ± 0.3 61.7 ± 0.5
MLDG [14] 53.1 ± 0.3 48.4 ± 0.3 70.5 ± 0.7 71.7 ± 0.4 60.9 ± 0.2
CORAL [24] 55.1 ± 0.7 49.7 ± 0.9 71.8 ± 0.2 73.1 ± 0.5 62.4 ± 0.4
MMD [15] 50.9 ± 1.0 48.7 ± 0.3 69.3 ± 0.7 70.7 ± 1.3 59.9 ± 0.4
DANN [7] 51.8 ± 0.5 47.1 ± 0.1 69.1 ± 0.7 70.2 ± 0.7 59.5 ± 0.5
CDANN [16] 51.4 ± 0.5 46.9 ± 0.6 68.4 ± 0.5 70.4 ± 0.4 59.3 ± 0.4
MTL [3] 51.6 ± 1.5 47.7 ± 0.5 69.1 ± 0.3 71.0 ± 0.6 59.9 ± 0.5
SagNet [17] 55.3 ± 0.4 49.6 ± 0.2 72.1 ± 0.4 73.2 ± 0.4 62.5 ± 0.3
ARM [28] 51.3 ± 0.9 48.5 ± 0.4 68.0 ± 0.3 70.6 ± 0.1 59.6 ± 0.3
VREx [12] 51.1 ± 0.3 47.4 ± 0.6 69.0 ± 0.4 70.5 ± 0.4 59.5 ± 0.1
RSC [10] 49.0 ± 0.1 46.2 ± 1.5 67.8 ± 0.7 70.6 ± 0.3 58.4 ± 0.6
SelfReg [11] 55.1 ± 0.8 49.2 ± 0.6 72.2 ± 0.3 73.0 ± 0.3 62.4 ± 0.1
MixStyle [29] 50.8 ± 0.6 51.4 ± 1.1 67.6 ± 1.3 68.8 ± 0.5 59.6 ± 0.8
Fish [23] 54.6 ± 1.0 49.6 ± 1.0 71.3 ± 0.6 72.4 ± 0.2 62.0 ± 0.6
SD [19] 55.0 ± 0.4 51.3 ± 0.5 72.5 ± 0.2 72.7 ± 0.3 62.9 ± 0.2
CAD [21] 52.1 ± 0.6 48.3 ± 0.5 69.7 ± 0.3 71.9 ± 0.4 60.5 ± 0.3
CondCAD [21] 53.3 ± 0.6 48.4 ± 0.2 69.8 ± 0.9 72.6 ± 0.1 61.0 ± 0.4
Fishr [20] 52.6 ± 0.9 48.6 ± 0.3 69.9 ± 0.6 72.4 ± 0.4 60.9 ± 0.3
MIRO [4] 57.4 ± 0.9 49.5 ± 0.3 74.0 ± 0.1 75.6 ± 0.2 64.1 ± 0.4
Ours 56.6 ± 0.7 50.3 ± 0.6 72.5 ± 0.0 73.8 ± 0.3 63.3 ± 0.1

Table 7. Average accuracies on the TerraInc [2] datasets using the default hyper-parameter settings in DomainBed [8].

L100 L38 L43 L46 Average
ERM [25] 42.1 ± 2.5 30.1 ± 1.2 48.9 ± 0.6 34.0 ± 1.1 38.8 ± 1.0
IRM [1] 41.8 ± 1.8 29.0 ± 3.6 49.6 ± 2.1 33.1 ± 1.5 38.4 ± 0.9
GroupGRO [22] 45.3 ± 4.6 36.1 ± 4.4 51.0 ± 0.8 33.7 ± 0.9 41.5 ± 2.0
Mixup [27] 49.4 ± 2.0 35.9 ± 1.8 53.0 ± 0.7 30.0 ± 0.9 42.1 ± 0.7
MLDG [14] 39.6 ± 2.3 33.2 ± 2.7 52.4 ± 0.5 35.1 ± 1.5 40.1 ± 0.9
CORAL [24] 46.7 ± 3.2 36.9 ± 4.3 49.5 ± 1.9 32.5 ± 0.7 41.4 ± 1.8
MMD [15] 49.1 ± 1.2 36.4 ± 4.8 50.4 ± 2.1 32.3 ± 1.5 42.0 ± 1.0
DANN [7] 44.3 ± 3.6 28.0 ± 1.5 47.9 ± 1.0 31.3 ± 0.6 37.9 ± 0.9
CDANN [16] 36.9 ± 6.4 32.7 ± 6.2 51.1 ± 1.3 33.5 ± 0.5 38.6 ± 2.3
MTL [3] 45.2 ± 2.6 31.0 ± 1.6 50.6 ± 1.1 34.9 ± 0.4 40.4 ± 1.0
SagNet [17] 36.3 ± 4.7 40.3 ± 2.0 52.5 ± 0.6 33.3 ± 1.3 40.6 ± 1.5
ARM [28] 41.5 ± 4.5 27.7 ± 2.4 50.9 ± 1.0 29.6 ± 1.5 37.4 ± 1.9
VREx [12] 48.0 ± 1.7 41.1 ± 1.5 51.8 ± 1.5 32.0 ± 1.2 43.2 ± 0.3
RSC [10] 42.8 ± 2.4 32.2 ± 3.8 49.6 ± 0.9 32.9 ± 1.2 39.4 ± 1.3
SelfReg [11] 46.1 ± 1.5 34.5 ± 1.6 49.8 ± 0.3 34.7 ± 1.5 41.3 ± 0.3
MixStyle [29] 50.6 ± 1.9 28.0 ± 4.5 52.1 ± 0.7 33.0 ± 0.2 40.9 ± 1.1
Fish [23] 46.3 ± 3.0 29.0 ± 1.1 52.7 ± 1.2 32.8 ± 1.0 40.2 ± 0.6
SD [19] 45.5 ± 1.9 33.2 ± 3.1 52.9 ± 0.7 36.4 ± 0.8 42.0 ± 1.0
CAD [21] 43.1 ± 2.6 31.1 ± 1.9 53.1 ± 1.6 34.7 ± 1.3 40.5 ± 0.4
CondCAD [21] 44.4 ± 2.9 32.9 ± 2.5 50.5 ± 1.3 30.8 ± 0.5 39.7 ± 0.4
Fishr [20] 49.9 ± 3.3 36.6 ± 0.9 49.8 ± 0.2 34.2 ± 1.3 42.6 ± 1.0
MIRO [4] 46.0 ± 0.7 34.4 ± 0.4 51.2 ± 1.0 33.6 ± 0.9 41.3 ± 0.2
Ours 46.2 ± 4.0 39.7 ± 2.4 53.0 ± 0.6 36.0 ± 0.3 43.7 ± 0.5



Table 8. Average accuracies on the DomainNet [18] datasets using the default hyper-parameter settings in DomainBed [8].

clip info paint quick real sketch Average
ERM [25] 50.4 ± 0.2 14.0 ± 0.2 40.3 ± 0.5 11.7 ± 0.2 52.0 ± 0.2 43.2 ± 0.3 35.3 ± 0.1
IRM [1] 43.2 ± 0.9 12.6 ± 0.3 35.0 ± 1.4 9.9 ± 0.4 43.4 ± 3.0 38.4 ± 0.4 30.4 ± 1.0
GroupGRO [22] 38.2 ± 0.5 13.0 ± 0.3 28.7 ± 0.3 8.2 ± 0.1 43.4 ± 0.5 33.7 ± 0.0 27.5 ± 0.1
Mixup [27] 48.9 ± 0.3 13.6 ± 0.3 39.5 ± 0.5 10.9 ± 0.4 49.9 ± 0.2 41.2 ± 0.2 34.0 ± 0.0
MLDG [14] 51.1 ± 0.3 14.1 ± 0.3 40.7 ± 0.3 11.7 ± 0.1 52.3 ± 0.3 42.7 ± 0.2 35.4 ± 0.0
CORAL [24] 51.2 ± 0.2 15.4 ± 0.2 42.0 ± 0.2 12.7 ± 0.1 52.0 ± 0.3 43.4 ± 0.0 36.1 ± 0.2
MMD [15] 16.6 ± 13.3 0.3 ± 0.0 12.8 ± 10.4 0.3 ± 0.0 17.1 ± 13.7 0.4 ± 0.0 7.9 ± 6.2
DANN [7] 45.0 ± 0.2 12.8 ± 0.2 36.0 ± 0.2 10.4 ± 0.3 46.7 ± 0.3 38.0 ± 0.3 31.5 ± 0.1
CDANN [16] 45.3 ± 0.2 12.6 ± 0.2 36.6 ± 0.2 10.3 ± 0.4 47.5 ± 0.1 38.9 ± 0.4 31.8 ± 0.2
MTL [3] 50.6 ± 0.2 14.0 ± 0.4 39.6 ± 0.3 12.0 ± 0.3 52.1 ± 0.1 41.5 ± 0.0 35.0 ± 0.0
SagNet [17] 51.0 ± 0.1 14.6 ± 0.1 40.2 ± 0.2 12.1 ± 0.2 51.5 ± 0.3 42.4 ± 0.1 35.3 ± 0.1
ARM [28] 43.0 ± 0.2 11.7 ± 0.2 34.6 ± 0.1 9.8 ± 0.4 43.2 ± 0.3 37.0 ± 0.3 29.9 ± 0.1
VREx [12] 39.2 ± 1.6 11.9 ± 0.4 31.2 ± 1.3 10.2 ± 0.4 41.5 ± 1.8 34.8 ± 0.8 28.1 ± 1.0
RSC [10] 39.5 ± 3.7 11.4 ± 0.8 30.5 ± 3.1 10.2 ± 0.8 41.0 ± 1.4 34.7 ± 2.6 27.9 ± 2.0
SelfReg [11] 47.9 ± 0.3 15.1 ± 0.3 41.2 ± 0.2 11.7 ± 0.3 48.8 ± 0.0 43.8 ± 0.3 34.7 ± 0.2
MixStyle [29] 49.1 ± 0.4 13.4 ± 0.0 39.3 ± 0.0 11.4 ± 0.4 47.7 ± 0.3 42.7 ± 0.1 33.9 ± 0.1
Fish [23] 51.5 ± 0.3 14.5 ± 0.2 40.4 ± 0.3 11.7 ± 0.5 52.6 ± 0.2 42.1 ± 0.1 35.5 ± 0.0
SD [19] 51.3 ± 0.3 15.5 ± 0.1 41.5 ± 0.3 12.6 ± 0.2 52.9 ± 0.2 44.0 ± 0.4 36.3 ± 0.2
CAD [21] 45.4 ± 1.0 12.1 ± 0.5 34.9 ± 1.1 10.2 ± 0.6 45.1 ± 1.6 38.5 ± 0.6 31.0 ± 0.8
CondCAD [21] 46.1 ± 1.0 13.3 ± 0.4 36.1 ± 1.4 10.7 ± 0.2 46.8 ± 1.3 38.7 ± 0.7 31.9 ± 0.7
Fishr [20] 47.8 ± 0.7 14.6 ± 0.2 40.0 ± 0.3 11.9 ± 0.2 49.2 ± 0.7 41.7 ± 0.1 34.2 ± 0.3
MIRO [4] 50.9 ± 0.2 15.6 ± 0.1 41.9 ± 0.4 10.4 ± 0.1 55.1 ± 0.1 42.5 ± 0.3 36.1 ± 0.1
Ours 50.2 ± 0.3 15.9 ± 0.1 42.0 ± 0.5 12.6 ± 0.2 51.3 ± 0.1 43.8 ± 0.3 36.0 ± 0.2
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