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Overview
The supplementary material is organized as follows. In

Sec. 1, we provide more discussions about AIM. Sec. 2 pro-
vides more versions of DAT. In Sec. 3, we provide further
analyses, investigating the advantages of aggregating chan-
nel and spatial information. Sec. 4, we conduct experiments
on the recent state-of-the-art method ELAN for fair com-
parisons with our method. Sec. 5 and Sec. 6 provide more
quantitative and visual comparisons. Finally, in Sec. 7, we
discuss the limitation and future work of our method.

1. More Discussions about AIM
Firstly, we further explain the motivation of the AIM.

Then, we describe the design considerations of spatial-
interaction (S-I) and channel-interaction (C-I) of AIM.

1.1. Motivation

In general, AIM is proposed to enhance the fusion of
depth-wise convolution (DW-Conv) and self-attention (SA)
branches, and to aggregate spatial and channel informa-
tion in a single SA module. Firstly, considering the mis-
alignment between local (DW-Conv) and global (SA) fea-
tures [18, 24], the two branches cannot be fused effectively.
Secondly, SA applies a weight-sharing mechanism, limit-
ing its feature learning in shared dimensions [8, 3]. As
shown in Fig. 1, SW-SA applies the same spatial atten-
tion map (dynamic weights, from the dot-product between
query and key) to each channel, namely, sharing weights
on channel dimensions. Similarly, CW-SA shares weights
on spatial dimensions. Since weight sharing, a single SA
module cannot effectively aggregate both spatial and chan-
nel dimensions. Finally, to alleviate above issues, we adap-
tively adjust features through dynamic weights. Meanwhile,
considering the parallel structure, the dynamic weights are
generated from interactions between two branches.

1.2. Design Considerations

To realize the above purpose, we propose AIM, which
consists of spatial-interaction (S-I) and channel-interaction

*Corresponding authors: Yulun Zhang, yulun100@gmail.com; Linghe
Kong, linghe.kong@sjtu.edu.cn

𝐶
𝑊

𝐻

𝐶
𝑊

𝐻

(a) SW-SA (b) CW-SA

spatial

sp
at
ia
l

channel

Figure 1: Illustration of the weight sharing mechanism. (a) SW-
SA shares attention weights on the channel dimensions (same
color along the channel dimension). (b) CW-SA shares attention
weights on spatial dimensions (same color along the spatial di-
mension). For simplification, we depict the case that the attention
is single-head. The feature size (H×W×C) here is 3×3×9.

(C-I). Specifically, we first introduce interaction from DW-
Conv to SA. For SW-SA, as the above analysis, we generate
a channel attention map (C-Map) to adjust channel dimen-
sion. For CW-SA, we generate a spatial attention map (S-
Map). For C-I, we follow the design of the SE layer [10].
For S-I, considering that the convolution branch already ex-
tracts spatial information, we only utilize 1×1 convolution
to compress the channel dimension without explicitly mod-
eling spatial information in S-I.

Furthermore, from the perspective of duality, we also in-
troduce interaction from SA to DW-Conv. Since SW-SA
extracts strong spatial information, we utilize S-I to transfer
it to the corresponding DW-Conv branch. Similarly, we ap-
ply C-I in CW-SA to strengthen the channel expression of
convolution. Synthesizing the above designs, we propose
the AIM to enhance branch fusion and achieve feature ag-
gregation. The ablation study in Table 1(b, c) in the main
paper demonstrates the effectiveness of our AIM.

2. More DAT Variants

In this section, we provide more versions of DAT to
demonstrate the effectiveness of our proposed method.
Firstly, we provide DAT-2 with fewer Params (model pa-
rameters) and similar FLOPs (computational complexity) to
SwinIR [13]. Secondly, we provide a light-weight model,
DAT-light, for light-weight image SR. Finally, we provide
DAT-3 with the same window size (8×8) as SwinIR.



Set5 Set14 B100 Urban100 Manga109Method Scale Params FLOPs PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SwinIR [13] ×2 11.75M 205.31G 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
DAT-2 ×2 11.06M 206.93G 38.58 0.9627 34.78 0.9268 32.60 0.9050 34.31 0.9457 40.29 0.9806

SwinIR [13] ×3 11.94M 208.48G 34.97 0.9318 30.93 0.8534 29.46 0.8145 29.75 0.8826 35.12 0.9537
DAT-2 ×3 11.25M 210.09G 35.14 0.9328 31.06 0.8547 29.53 0.8161 30.13 0.8878 35.49 0.9550

SwinIR [13] ×4 11.90M 215.32G 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
DAT-2 ×4 11.21M 216.93G 33.01 0.9047 29.21 0.7965 27.98 0.7509 27.86 0.8341 32.41 0.9285

Table 1: Quantitative comparison (PSNR/SSIM) between DAT-2 and SwinIR [13]. The input size is 3×128×128 to calculate FLOPs.

Set5 Set14 B100 Urban100 Manga109Method Scale Params FLOPs PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SwinIR-light [13] ×2 910K 244.37G 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783
ELAN-light [29] ×2 621K 201.34G 38.17 0.9611 33.94 0.9207 32.30 0.9012 32.76 0.9340 39.11 0.9782
DAT-light ×2 553K 194.26G 38.24 0.9614 34.01 0.9214 32.34 0.9019 32.89 0.9346 39.49 0.9788

SwinIR-light [13] ×3 930K 110.80G 34.62 0.9289 30.54 0.8463 29.20 0.8082 28.66 0.8624 33.98 0.9478
ELAN-light [29] ×3 629K 89.48G 34.61 0.9288 30.55 0.8463 29.21 0.8081 28.69 0.8624 34.00 0.9478
DAT-light ×3 561K 88.59G 34.76 0.9299 30.63 0.8474 29.29 0.8103 28.89 0.8666 34.55 0.9501

SwinIR-light [13] ×4 930K 63.59G 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.7980 30.92 0.9151
ELAN-light [29] ×4 640K 53.72G 32.43 0.8975 28.78 0.7858 27.69 0.7406 26.54 0.7982 30.92 0.9150
DAT-light ×4 573K 49.69G 32.57 0.8991 28.87 0.7879 27.74 0.7428 26.64 0.8033 31.37 0.9178

Table 2: Quantitative comparison (PSNR/SSIM) for lightweight image SR. Output size is 3×1280×720 to calculate FLOPs. We re-test
the Params and FLOPs with all official codes on SwinIR and ELAN.

Set5 Set14 B100 Urban100 Manga109Method Scale Params FLOPs PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SwinIR [13] ×2 11.75M 205.31G 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
DAT-3 ×2 11.06M 186.54G 38.52 0.9626 34.58 0.9261 32.54 0.9043 33.86 0.9424 40.12 0.9804

Table 3: Quantitative comparison (PSNR/SSIM) between DAT-3 and SwinIR [13] (×2). The input size is 3×128×128 to calculate FLOPs.

2.1. Another Model: DAT-2

Implementation details. We provide another model vari-
ant of DAT: DAT-2. We set the residual group (RG) number,
dual aggregation Transformer block (DATB) pair number,
channel number, attention head number, and channel ex-
pansion factor as 6, 3, 180, 6, and 2, respectively. We set
the window size as 8×32 for DAT-2.
Training Settings. We train DAT-2 on DIV2K [25] and
Flickr2K [14]. We use five datasets for evaluation: Set5 [1],
Set14 [26], B100 [19], Urban100 [11], and Manga109 [20]
with three factors: ×2, ×3, and ×4. The training settings
are consistent with DAT-S and DAT.
Quantitative Results. We compare our DAT-2 with
SwinIR [13]. The results are listed in Table 1. FLOPs
are calculated when the input size is set as 3×128×128 for
three scale factors. As we can see, our DAT-2 outperforms
SwinIR on all datasets with all scale factors. Specially, our
DAT-2 achieves 0.5 dB and 0.37 dB gains on Urban100 and
Manga109 (×2), respectively. Meanwhile, DAT-2 has fewer
Params and similar FLOPs to SwinIR.

2.2. Light-weight Model: DAT-light

Implementation details. We provide a light-weight model,
DAT-light, for light-weight image SR. DAT-light only has 1
RG and 9 DATB pairs (9 DCTB and 9 DSTB). The channel

number, attention head number, and channel expansion fac-
tor are set as 60, 6, and 2, respectively. The window size for
DSTB is set as 8×32.
Training Settings. We train DAT-light on DIV2K [25] and
Flickr2K [14], and test it on Set5 [1], Set14 [26], B100 [19],
Urban100 [11], and Manga109 [20]. The training settings
are consistent with DAT-S and DAT.
Quantitative Results. We compare our DAT-light with re-
cent state-of-the-art lightweight methods: SwinIR [13] and
ELAN [29], in Table 2. FLOPs are calculated when the out-
put size is set as 3×1280×720 for three scale factors. Please
note that we re-test the Params and FLOPs of SwinIR and
ELAN with their official codes. Our DAT-light achieves
better performance with fewer Params and FLOPs for all
scale factors, compared with SwinIR and ELAN.

2.3. 8×8 Window Size Model: DAT-3

Implementation details. We provide DAT-3 with a win-
dow size of 8×8, the same as SwinIR [13]. Specifically, we
set the RG number, DATB pair number, channel number,
attention head number, and channel expansion factor as 6,
3, 180, 6, and 2. The window size for DSTB is set as 8×8.
Training Settings. We train DAT-3 on DIV2K [25] and
Flickr2K [14]. The training settings are consistent with
DAT-S and DAT. The main paper has more details.
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Figure 2: LAM [7] comparison between CAT-A [4] and DAT.

Quantitative Results. To demonstrate the effectiveness of
our method, we build DAT-3 with the same window size as
SwinIR [13]. Due to time issues, we only train DAT-3 on
image SR (×2), and compare it with SwinIR. The results
are shown in Table 3. FLOPs are calculated when the out-
put size is set as 3×128×128. As we can see, with fewer
Params and FLOPs, our DAT-3 outperforms SwinIR, except
for the SSIM value on Urban100. Especially, our DAT-3 ob-
tains a 0.2 dB PSNR gains on Manga109. All these results
demonstrate the effectiveness of our methods.

3. Further Analyses
In this section, we provide more quantitative and visual

analyses. Firstly, we apply the LAM [7] to visualize the
range of information utilization. Then, we introduce sev-
eral perceptual similarity metrics to evaluate our method.
Finally, we plot the convergence curves during training for
SwinIR and our models.

3.1. LAM Analyses
We apply the LAM [7] to analyze the performance of our

DAT. LAM is a diagnostic tool designed for image super-
resolution (SR). It can show the pixels that contribute most
to the reconstruction of the selected region. The corre-
sponding pixels are marked as red in related images. More
marked pixels mean the model can utilize more information,
thus resulting in better performance. Fig. 2 shows the LAM
comparisons between CAT-A [4] and DAT. Comparing the
second and fourth columns, we can find that the number of
red marker points of our DAT is more than CAT-A. It in-
dicates that our DAT has larger receptive fields and utilizes
more global information to restore images. This is because
our method has a stronger representation ability through ag-
gregating spatial and channel features.

3.2. Perceptual Similarity Analyses

In the main paper, we quantitatively compare our method
with current methods using metrics: PSNR/SSIM. How-
ever, the literature [2] reveals that the superiority of PSNR
values does not always accord with better visual quality.
Moreover, we also found that compared to CAT-A, our DAT
has a lower PSNR value on Urban100 (×4), but has better

Urban100 Manga109Method Scale LPIPS ↓ DISTS ↓ LPIPS ↓ DISTS ↓

SwinIR [13] ×4 0.1840 0.1533 0.0926 0.0766
CAT-A [4] ×4 0.1801 0.1502 0.0906 0.0753
DAT (ours) ×4 0.1765 0.1487 0.0896 0.0735

Table 4: Perceptual Similarity (LPIPS/DISTS) Comparison.

visual results. To further evaluate our methods, we intro-
duce two metrics: LPIPS [28] and DISTS [6]. Compared
with PSNR, LPIPS and DISTS align more with human per-
ception. The lower the value of LPIPS and DISTS, the more
similar the two images. We compare our DAT with SwinIR
and CAT-A on Urban100 and Manga109 with a scale factor
of ×4. The results are listed in Table 4. Our DAT achieves
the best performance (lowest value) on both datasets. This
result demonstrates the superiority of our method. It is also
consistent with the visual comparison in Figs. 4 and 5.

3.3. Convergence Analyses

The convergence curves for SwinIR, DAT-S, and DAT
are shown in Fig. 3. PSNR values are tested on Set5 [1],
Set14 [26], B100 [19], Urban100 [11], and Manga109 [20]
(×2). For fair comparisons, we train SiwinIR under the of-
ficial code with the same training settings as our methods.
The total training iterations are 5×105. We sample every
5×103 iterations on Set5, while every 5×104 iterations on
other datasets. We can observe that both DAT-S and DAT
converge faster than SwinIR on all datasets. These results
are in accord with quantitative comparisons in Table 6, fur-
ther demonstrating the effectiveness of our method.

4. Recent Method: ELAN

Recently, Zhang et al. [29] proposed a new image SR
Transformer model, named efficient long-range attention
network (ELAN). ELAN improves the efficiency of Trans-
former in SR tasks and outperforms SwinIR [13] in some
cases. However, ELAN is trained on DIV2K [25], while
our DAT-S and DAT are on DIV2K and Flickr2K [14].
Meanwhile, the model size and computational complexity
of ELAN are smaller than our model. For fair comparisons,
we increase the efficient long-range attention block (ELAB)
number in ELAN, thus constructing a new variant of ELAN,
denoted as ELAN-2. Then we re-train ELAN and ELAN-2
on DIV2K and Flickr2K.

4.1. Experimental Settings

Implementation Details. For ELAN, we adopt the settings
in the official paper [29]. Specifically, the ELAB number
is 36, and the channel number is 180. The GMSA module
contains three window sizes: 4×4, 8×8, and 16×16. For
ELAN-2, we only increase the ELAB number from 36 to
48, while other settings are the same as ELAN.
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Figure 3: Convergence comparison on SwinIR [13], DAT-S, and DAT.

Set5 Set14 B100 Urban100 Manga109Method Training Dataset Params FLOPs PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ELAN [29] DIV2K 8.43M 161.24G 38.36 0.9620 34.20 0.9228 32.45 0.9030 33.44 0.9391 39.62 0.9793
ELAN* [29] DIV2K+Flickr2K 8.43M 161.24G 38.38 0.9619 34.41 0.9247 32.48 0.9035 33.54 0.9410 39.74 0.9795
ELAN-2* [29] DIV2K+Flickr2K 11.23M 214.86G 38.44 0.9623 34.43 0.9245 32.51 0.9040 33.76 0.9423 39.90 0.9800

SwinIR [13] DIV2K+Flickr2K 11.75M 205.31G 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
DAT-S (ours) DIV2K+Flickr2K 11.06M 193.34G 38.54 0.9627 34.60 0.9258 32.57 0.9047 34.12 0.9444 40.17 0.9804

Table 5: Quantitative comparison (×2) about variants of ELAN [29], SwinIR [13], and our DAT-S. The input size is 3×128×128 to
calculate FLOPs. “*” indicates that we re-train the model on DIV2K [25] and Flickr2K [14].

Training Settings. We re-train ELAN and ELAN-2 on
DIV2K [25] and Flickr2K [14] with the official code.
We train two models with patch size 64×64 and batch
size 32. Following the training details in the official pa-
per [29], we use Adam optimizer with β1=0.9, β2=0.999,
and ϵ=10−8. The total training epochs are 500. The initial
learning rate is set as 2×10−4 and reduced by half at epochs
[250,400,425,450,475]. Moreover, we adopt random rota-
tion and flips for data augmentation.

4.2. Model Comparisons
We compare re-trained ELAN and ELAN-2 with official

ELAN [29], SwinIR [13], and our DAT-S on five benchmark
datasets: Set5 [1], Set14 [26], B100 [19], Urban100 [11],
and Manga109 [20] with scale factor ×2. The perfor-
mance (PSNR/SSIM), parameters, and FLOPs are reported.
FLOPs are calculated when the input size is 3×128×128.
The results are listed in Table 5. We can observe that using
DIV2K and Flickr2K to train ELAN can improve the per-
formance of the model. Compared with training on DIV2K,
ELAN obtains 0.1 dB and 0.12 dB gains on Urban100 and
Manga109. Meanwhile, increasing the number of efficient
long-range attention blocks in ELAN can also advance per-
formance. Furthermore, comparing ELAN-2, SwinIR, and

our DAT-S, we can find that our DAT-S outperforms the
other two models with fewer parameters and FLOPs. Es-
pecially the three models are trained on the same dataset.

5. More Quantitative Results
We compare our models: DAT-S, DAT-2, and DAT,

with state-of-the-art methods: EDSR [14], SRMDNF [27],
RDN [32], OISR [9], RCAN [30], NLRN [15], RNAN [31],
SRFBN [12], SAN [5], RFANet [16], IGNN [34],
HAN [23], CSNLN [22], NLSA [21], CRAN [33],
ELAN [29], DFSA [17], SwinIR [13], and CAT-A [4]. We
use self-ensemble strategy in testing and mark the model
with a symbol “+”. Quantitative results are shown in Ta-
ble 6. Our DAT outperforms other methods in all cases, ex-
cept for the PSNR value (CAT-A) on Urban100 (×4). Addi-
tionally, our DAT-S and DAT-2 achieve comparable or better
performance than previous methods.

6. More Visual Results
We provide more visual comparisons in Figs. 4 and 5 as

the supplement of the visualization in the main paper. As we
can see, most compared methods suffer from blurring arti-
facts and cannot recover some details in some challenging



cases. In contrast, our DAT can alleviate the blurring artifact
to some degree and recover sharp textures. For instance, in
img_021, our DAT recovers more textures and patterns than
other methods. Similar observations are shown in other im-
ages. These visual comparisons further demonstrate that
our method has powerful modeling capability by aggregat-
ing spatial and channel features.

7. Limitations and Future Work
In this work, we propose the dual aggregation Trans-

former (DAT), for image SR. Our DAT can aggregate spatial
and channel information via the inter-block and intra-block
manner, thus obtaining powerful representation ability. Our
DAT outperforms recent state-of-the-art image SR methods.
Nevertheless, we for more types of image SR tasks (e.g.,
blind and real-world image SR), we have not explored. We
will apply our DAT to more kinds of image SR tasks in the
future to further demonstrate the effectiveness of our pro-
posed method. In addition, we mainly focus on designing
the Transformer block to aggregate spatial and channel in-
formation. For the network architecture, we have not in-
vestigated it. In future work, we will explore other network
structures, such as parallel or multi-scale architectures.
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Set5 Set14 B100 Urban100 Manga109Method Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR [14] ×2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
SRMDNF [27] ×2 37.79 0.9601 33.32 0.9159 32.05 0.8985 31.33 0.9204 38.07 0.9761
RDN [32] ×2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780
OISR [9] ×2 38.21 0.9612 33.94 0.9206 32.36 0.9019 33.03 0.9365 - -
RCAN [30] ×2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
NLRN [15] ×2 38.00 0.9603 33.46 0.9159 32.19 0.8992 31.81 0.9249 - -
RNAN [31] ×2 38.17 0.9611 33.87 0.9207 32.31 0.9014 32.73 0.9340 39.23 0.9785
SRFBN [12] ×2 38.11 0.9609 33.82 0.9196 32.29 0.9010 32.62 0.9328 39.08 0.9779
SAN [5] ×2 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
RFANet [16] ×2 38.26 0.9615 34.16 0.9220 32.41 0.9026 33.33 0.9389 39.44 0.9783
IGNN [34] ×2 38.24 0.9613 34.07 0.9217 32.41 0.9025 33.23 0.9383 39.35 0.9786
HAN [23] ×2 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785
CSNLN [22] ×2 38.28 0.9616 34.12 0.9223 32.40 0.9024 33.25 0.9386 39.37 0.9785
NLSA [21] ×2 38.34 0.9618 34.08 0.9231 32.43 0.9027 33.42 0.9394 39.59 0.9789
CRAN [33] ×2 38.31 0.9617 34.22 0.9232 32.44 0.9029 33.43 0.9394 39.75 0.9793
ELAN [29] ×2 38.36 0.9620 34.20 0.9228 32.45 0.9030 33.44 0.9391 39.62 0.9793
DFSA [17] ×2 38.38 0.9620 34.33 0.9232 32.50 0.9036 33.66 0.9412 39.98 0.9798
SwinIR [13] ×2 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
CAT-A [4] ×2 38.51 0.9626 34.78 0.9265 32.59 0.9047 34.26 0.9440 40.10 0.9805
DAT-S (ours) ×2 38.54 0.9627 34.60 0.9258 32.57 0.9047 34.12 0.9444 40.17 0.9804
DAT-2 (ours) ×2 38.58 0.9627 34.78 0.9268 32.60 0.9050 34.31 0.9457 40.29 0.9806
DAT (ours) ×2 38.58 0.9629 34.81 0.9272 32.61 0.9051 34.37 0.9458 40.33 0.9807
DAT-S+ (ours) ×2 38.57 0.9627 34.72 0.9267 32.60 0.9049 34.25 0.9451 40.26 0.9807
DAT2+ (ours) ×2 38.61 0.9629 34.81 0.9271 32.62 0.9052 34.44 0.9463 40.38 0.9808
DAT+ (ours) ×2 38.63 0.9631 34.86 0.9274 32.63 0.9053 34.47 0.9465 40.43 0.9809

EDSR [14] ×3 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476
SRMDNF [27] ×3 34.12 0.9254 30.04 0.8382 28.97 0.8025 27.57 0.8398 33.00 0.9403
RDN [32] ×3 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653 34.13 0.9484
OISR [9] ×3 34.72 0.9297 30.57 0.8470 29.29 0.8103 28.95 0.8680 - -
RCAN [30] ×3 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499
NLRN [15] ×3 34.27 0.9266 30.16 0.8374 29.06 0.8026 27.93 0.8453 - -
RNAN [31] ×3 34.66 0.9290 30.53 0.8463 29.26 0.8090 28.75 0.8646 34.25 0.9483
SRFBN [12] ×3 34.70 0.9292 30.51 0.8461 29.24 0.8084 28.73 0.8641 34.18 0.9481
SAN [5] ×3 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494
RFANet [16] ×3 34.79 0.9300 30.67 0.8487 29.34 0.8115 29.15 0.8720 34.59 0.9506
IGNN [34] ×3 34.72 0.9298 30.66 0.8484 29.31 0.8105 29.03 0.8696 34.39 0.9496
HAN [23] ×3 34.75 0.9299 30.67 0.8483 29.32 0.8110 29.10 0.8705 34.48 0.9500
CSNLN [22] ×3 34.74 0.9300 30.66 0.8482 29.33 0.8105 29.13 0.8712 34.45 0.9502
NLSA [21] ×3 34.85 0.9306 30.70 0.8485 29.34 0.8117 29.25 0.8726 34.57 0.9508
CRAN [33] ×3 34.80 0.9304 30.73 0.8498 29.38 0.8124 29.33 0.8745 34.84 0.9515
ELAN [29] ×3 34.90 0.9313 30.80 0.8504 29.38 0.8124 29.32 0.8745 34.73 0.9517
DFSA [17] ×3 34.92 0.9312 30.83 0.8507 29.42 0.8128 29.44 0.8761 35.07 0.9525
SwinIR [13] ×3 34.97 0.9318 30.93 0.8534 29.46 0.8145 29.75 0.8826 35.12 0.9537
CAT-A [4] ×3 35.06 0.9326 31.04 0.8538 29.52 0.8160 30.12 0.8862 35.38 0.9546
DAT-S (ours) ×3 35.12 0.9327 31.04 0.8543 29.51 0.8157 29.98 0.8846 35.41 0.9546
DAT-2 (ours) ×3 35.14 0.9328 31.06 0.8547 29.53 0.8161 30.13 0.8878 35.49 0.955
DAT (ours) ×3 35.16 0.9331 31.11 0.8550 29.55 0.8169 30.18 0.8886 35.59 0.9554
DAT-S+ (ours) ×3 35.16 0.9329 31.10 0.8550 29.54 0.8161 30.10 0.8861 35.54 0.9551
DAT-2+ (ours) ×3 35.17 0.9331 31.13 0.8555 29.56 0.8166 30.28 0.8896 35.63 0.9555
DAT+ (ours) ×3 35.19 0.9334 31.17 0.8558 29.58 0.8173 30.30 0.8902 35.72 0.9559

EDSR [14] ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
SRMDNF [27] ×4 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7731 30.09 0.9024
RDN [32] ×4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151
OISR [9] ×4 32.53 0.8992 28.86 0.7878 27.75 0.7428 26.79 0.8068 - -
RCAN [30] ×4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
NLRN [15] ×3 31.92 0.8916 28.36 0.7745 27.48 0.7306 25.79 0.7729 - -
RNAN [31] ×3 32.43 0.8977 28.83 0.7871 27.72 0.7410 26.61 0.8023 31.09 0.9149
SRFBN [12] ×4 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.60 0.8015 31.15 0.9160
SAN [5] ×4 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
RFANet [16] ×4 32.66 0.9004 28.88 0.7894 27.79 0.7442 26.92 0.8112 31.41 0.918
IGNN [34] ×4 32.57 0.8998 28.85 0.7891 27.77 0.7434 26.84 0.8090 31.28 0.9182
HAN [23] ×4 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177
CSNLN [22] ×4 32.68 0.9004 28.95 0.7888 27.80 0.7439 27.22 0.8168 31.43 0.9201
NLSA [21] ×4 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184
CRAN [33] ×4 32.72 0.9012 29.01 0.7918 27.86 0.7460 27.13 0.8167 31.75 0.9219
ELAN [29] ×4 32.75 0.9022 28.96 0.7914 27.83 0.7459 27.13 0.8167 31.68 0.9226
DFSA [17] ×4 32.79 0.9019 29.06 0.7922 27.87 0.7458 27.17 0.8163 31.88 0.9266
SwinIR [13] ×4 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
CAT-A [4] ×4 33.08 0.9052 29.18 0.7960 27.99 0.7510 27.89 0.8339 32.39 0.9285
DAT-S (ours) ×4 33.00 0.9047 29.20 0.7962 27.97 0.7502 27.68 0.8300 32.33 0.9278
DAT-2 (ours) ×4 33.01 0.9047 29.21 0.7965 27.98 0.7509 27.86 0.8341 32.41 0.9285
DAT (ours) ×4 33.08 0.9055 29.23 0.7973 28.00 0.7515 27.87 0.8343 32.51 0.9291
DAT-S+ (ours) ×4 33.06 0.9052 29.25 0.7968 27.99 0.7507 27.78 0.8316 32.50 0.9289
DAT-2+ (ours) ×4 33.07 0.9053 29.26 0.7973 28.01 0.7515 27.97 0.8358 32.60 0.9296
DAT+ (ours) ×4 33.15 0.9062 29.29 0.7983 28.03 0.7518 27.99 0.8365 32.67 0.9301

Table 6: Quantitative comparison with state-of-the-art methods. The best and second-best results are coloured red and blue.



Urban100: img_008 (×4)

HR Bicubic RCAN [30] SAN [5] RFANet [16]

HAN [23] CSNLN [22] SwinIR [13] CAT-A [4] DAT (ours)

Urban100: img_021 (×4)

HR Bicubic RCAN [30] SAN [5] RFANet [16]

HAN [23] CSNLN [22] SwinIR [13] CAT-A [4] DAT (ours)

Urban100: img_027 (×4)

HR Bicubic RCAN [30] SAN [5] RFANet [16]

HAN [23] CSNLN [22] SwinIR [13] CAT-A [4] DAT (ours)

Urban100: img_037 (×4)

HR Bicubic RCAN [30] SAN [5] RFANet [16]

HAN [23] CSNLN [22] SwinIR [13] CAT-A [4] DAT (ours)

Urban100: img_046 (×4)

HR Bicubic RCAN [30] SAN [5] RFANet [16]

HAN [23] CSNLN [22] SwinIR [13] CAT-A [4] DAT (ours)

Urban100: img_069 (×4)

HR Bicubic RCAN [30] SAN [5] RFANet [16]

HAN [23] CSNLN [22] SwinIR [13] CAT-A [4] DAT (ours)

Figure 4: Visual comparison for image SR (×4) in some challenging cases.



Urban100: img_076 (×4)

HR Bicubic RCAN [30] SAN [5] RFANet [16]

HAN [23] CSNLN [22] SwinIR [13] CAT-A [4] DAT (ours)

Urban100: img_084 (×4)

HR Bicubic RCAN [30] SAN [5] RFANet [16]

HAN [23] CSNLN [22] SwinIR [13] CAT-A [4] DAT (ours)

Urban100: img_100 (×4)

HR Bicubic RCAN [30] SAN [5] RFANet [16]

HAN [23] CSNLN [22] SwinIR [13] CAT-A [4] DAT (ours)

Manga109: Belmondo (×4)

HR Bicubic RCAN [30] SAN [5] RFANet [16]

HAN [23] CSNLN [22] SwinIR [13] CAT-A [4] DAT (ours)

Manga109: EvaLady (×4)

HR Bicubic RCAN [30] SAN [5] RFANet [16]

HAN [23] CSNLN [22] SwinIR [13] CAT-A [4] DAT (ours)

Manga109: KimiHaBo. (×4)

HR Bicubic RCAN [30] SAN [5] RFANet [16]

HAN [23] CSNLN [22] SwinIR [13] CAT-A [4] DAT (ours)

Figure 5: Visual comparison for image SR (×4) in some challenging cases.


