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We provide details of learning scheme, discussion on the
scalability of proposed method and more experimental re-
sults in appendix. Code will be released publicly.

A. Details of Learning Scheme

The algorithm of training our model is described as fol-
low:

Algorithm 1 Training

1: Initialize main network Conv, L, EGCN;

2: Initialize siamese network Conv®, L*, EGCN?;

3: for number of training epochs do

4: Select a mini-batch B images;

5 for every image J in the B do

6: Generate random noise N ~ N(0, 1);

7: W < EGCN(L(Conv(J)));

8: W3, < EGCN*(L*(Conv*(3 + N)));

9 Obtain SFCs via T and Cover_and_Merge;

10: Calculate objectives ®°, ¢™;

11: end for

12: Calculate average ®° using ®*;

13:  Calculate average ®™ using ®™;

14:  if ®° is better then

15: Fix Conv®, L*, EGCN?,;

16: Loss function £ <+ L p

17: Update Conv, L, EGCN using Adam optimizer

18: else

19: Fix Conv, L, EGCN

20: Loss function £ < Lip

21: Update Conv®,L*, EGCN® using Adam opti-
mizer

22: end if

23: end for

B. Scalability of Our Method

In the following experiments, we verify the scalablity of
proposed algorithm. We first ablate the GPU occupation of
EGCN with different size of input grid graphs. Then, we
conduct experiments on Tiny-imagenet dataset with various
input resolutions.

Method Size GPU Memory
GCN [4] 128x128 1248M
EGCN 128x128 128M
GCN [4] 256x256 17280M
EGCN  256x256 513M

Table 1: All methods are tested by using grid graphs with
batch size 512. With the increase of grid size, the GPU can-
not afford the memory cost produced by GCN.

Dataset Method  Autocorrelationt
Zigzag 0.799 (-0.072)
Tiny-imagenet (128x128) [5] Hilbert [2] 0.871
Ours 0.881 (+0.01)
Zigzag 0.768 (-0.154)
Tiny-imagenet (256x256) [5] Hilbert [2] 0.922
Ours 0.929 (+0.007)

Table 2: Zigzag curve is implemented by Pytorch reshape
function. The autocorrelation factor £ = 100 for experi-
ments.

Scalability of EGCN. In this experiment, we ablate grid
graph with different sizes and test the GPU memory oc-
cupation to evaluate the efficiency of different GCN meth-
ods. The experimental setting is identical to the main paper,
which adopts 3-layer GCN networks for measurement and
the tested GPU is RTX 3090 Ti.

The results in Table 1 show that our proposed EGCN
consumes much lower GPU memory compared with GCN
method, which illustrates that our EGCN is scalable to large
image.

Scalability of Proposed Framework. We also show the
scalability of our framework by increasing the input image
size to 256x256 with Tiny-imagenet. The results in Ta-
ble 2 demonstrate that our model is scalable to different sizes
of the image. However, the performance improvement is
marginally decreased with the increasing image resolution.
The potential reason is that our learning scheme may not
find the global optimal MST. Searching for an optimal MST



Method Ensemble Autocorrelation Training Time Inference Time
2-predictor X 0.625 Tirain Thest
2-predictor v 0.626 Tirain 2Test
3-predictor X 0.625 1.5T4rqin Thest
3-predictor v 0.628 1.5Train 3Test
4-predictor X 0.626 2T rain Thest
4-predictor v 0.629 2T4rain AT et

Table 3: Ablation on multi-teacher strategy. T},qin and Tiest
stand for the training and testing time of the main paper set-
ting.

on large images is a difficult problem and we will continue
finding a better learning scheme to solve the problem in the
future work.

C. More Ablation Studies

We follow the same ablation setting as the main paper,

which uses the MNIST dataset with the autocorrelation ob-
jective (k=6).
Ablation on Multiple Teacher and Model Ensemble. Our
learning scheme can be viewed as a two-predictor structure
and we select the predictor with higher performance as the
teacher while regarding the other as the student. It is nat-
ural to extend this scheme to a multiple-predictor structure.
Therefore, in this experiment, we add multiple networks that
share the same setting with the siamese network that men-
tioned in our paper. For example, the input for all networks
are original images with noise (J + N(0, 1)). Then, we set
the best predictor as the teacher while others as the student.
The parameters of students are updated by measuring the
KL-divergence with the output features of the teacher net-
work. The original setting in the main paper is denoted as
2-predictor and we propose N-predictor (N > 2). The ex-
perimental results can be found in Table 3.

Here ensemble indicates for choosing the best prediction
as the final output, which is different from the setting in our
main paper that only use the main network for inference. It
shows that the performance improvement introduced by the
multiple-predictor structure and model ensemble are trivial.
Considering the time consumption, these operations are not
worthy.

Compared with random search. In the optimization phase,
we incorporated a siamese network with noisy input to en-
hance the output diversity. To demonstrate the superiority
of our learning-based approach over random search, we con-
ducted experiments. First, we generated random MST and
applied the Cover-and-Merge algorithm to create a random
SFC (referred to as B;-SFC) as the first baseline. Next, we
used an untrained network to perform direct inference, creat-
ing another random SFC (referred to as Bo-SFC) as the sec-
ond baseline. In Table 5, we compared the autocorrelation
performance of these SFC search methods. The MNIST ex-
perimental results clearly indicate that our learning scheme

Method ‘ Train Params  Test Params ‘ TGIF(LZW) FFHQ(AC) FFHQ(LZW)
NSFC 22.9M 11.7M 556.9 0911 678.3
Ours 22.3M 11.1M 552.4 0.925 671.9

Table 4: Comparison with NSFC. AC means autocorrelation
(k = 10) and LZW means LZW code length.

Learning Scheme  Autocorrelation Noise Type Autocorrelation
B1-SFC 0.376

B>-SFC 0.382 U(-1,1) 0.624
Ours 0.625 N(0,1) 0.625

Table 6: Comparison be-
tween two noise types.

Table 5: Comparison be-
tween our scheme and oth-

€rs.
Method Dict Length|  Scan Order Array Size (MB)
Hilbert [2] 437.72 0.0156
Dafner [1] 419.81 0.0156
NSFEC [7] 413.65 0.0156
Ours 407.28 0.0156

Table 7: Average LZW dictionary length of different meth-
ods. Scan order array is an 2x 1024 array which stores the
scan order of SFC.

significantly outperforms random search.

Noise Selection. In our main paper, we added random Gaus-
sian noise N(0,1) to the inputs of the siamese network to
increase input diversity. However, uniform noise U(—1, 1)
is also a viable option. Therefore, we conducted an ablation
study to determine the optimal noise type. The experimental
results are presented in Table 6, which shows that the choice
of noise has a negligible impact on the results. This indicates
that the model performance is not determined by the type of
noise used, as long as it can introduce input diversity to the
siamese network.

D. More Comparison

More datasets. In Table 4 we compare the performance of
our method with NSFC [7] on the TGIF [6] and FFHQ [3]
datasets. Unlike NSFC, which generates SFC per-class, our
method generates SFC per-image. This means that the gen-
erated curve is adapted to each image, resulting in better
quality in terms of LZW code length and autocorrelation.

Dictionary length. In addition to the LZW coding results,
we test the dictionary length of the LZW code that can be
used to decode compressed sequences. We use the MNIST
dataset during the experiment, and a shorter length indi-
cates a more repetitive pattern, which implies better cluster-
ing properties since homogeneous areas are clustered. The
results in Table 7 show that our generated SFC requires
the smallest average LZW dictionary length. Although our
method achieves better results than NSFC on LZW bench-
marks, our advantage lies in generating SFCs for individual



images. Since NSFC [7] generates SFCs for each class, it
can amortize the memory overhead of storing the LZW dic-
tionary and SFC scan order. In contrast, our method gener-
ates an SFC for each image, which, although yielding better
performance, incurs a larger memory overhead compared to
NSFC in multi-image tasks such as video compression (In
our method, storing the scan order array for 10K images will
cost 156MB).
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