
Efficient Video Action Detection with Token Dropout and Context Refinement
Supplementary Material

Lei Chen1 Zhan Tong2 Yibing Song3 Gangshan Wu1 Limin Wang1,4*

1State Key Laboratory for Novel Software Technology, Nanjing University
2Ant Group 3AI3 Institute, Fudan University 4Shanghai AI Lab

leichen1997@outlook.com zhantong.2023@gmail.com yibingsong.cv@gmail.com
gswu@nju.edu.cn lmwang@nju.edu.cn

In this supplementary material, we provide more details
of EVAD from the following aspects:

• The detailed architecture illustration is in § A.

• The implementation details are in § B.

• Additional experimental results are in § C.

• Results analysis and visualization are in § D.

A. Architectures
We present the architectural details of EVAD based on

16-frame vanilla ViT-Base and ViT-Large backbones used
in the experiments and the corresponding output sizes of
each stage, as shown in Table 1. The token pruning with
keep rate ρ is executed three times in total, following each
stage. The intermediate keyframe features from backbone
stages 1-4 are used for actor localization via EVAD local-
ization branch, and the spatiotemporal features from stage
4 are used for actor feature refinement and final action clas-
sification prediction via EVAD classification branch. The
computational costs of both models are reduced by 40%
(ViT-B) and 42% (ViT-L) at ρ=0.7, respectively.

B. Implementation Details
Query-based actor localization head. The localization
head initializes n learnable proposal boxes and correspond-
ing proposal features, which can be optimized together in
the network. Then, the head utilizes RoIAlign operations
to extract RoI features for each box. Next, a sequentially-
stacked Dynamic Instance Interactive head [9, 1] is con-
ducted on each RoI feature to generate the final predictions
conditioned on proposal features. Finally, two task-specific
prediction layers are used to produce the prediction boxes
and corresponding actor confidence scores.

*Corresponding author.

Configurations. By default, the token pruning module is
incorporated into the 4th, 7th, and 10th layer of ViT-B (with
12 layers in total) and incorporated into the 7th, 13th, and
19th layer of ViT-L (with 24 layers in total). We specify the
number of query n as 100 and the dimension of query as
256, and we use 6 dynamic instance interactive modules in
actor localization branch, same as in [1]. For action classifi-
cation branch, the dimension of context refinement decoder
is 384 (ViT-B) and 512 (ViT-L), and the depth of decoders
for these two backbones is 6 and 12. The backbone is initial-
ized with Kinetics-pretrained weights from VideoMAE and
other newly added layers are initialized with Xavier [4].

Losses and optimizers. For all experiments, we simply
follow those in the original paper of WOO. Specifically, the
loss function includes the set prediction loss and the action
classification loss, where the set prediction loss consists of
the cross-entropy loss over two classes (person and back-
ground), L1 loss and GIoU loss on the box. The action clas-
sification loss is denoted by the binary cross-entropy loss.
We set the loss weight as λce=2, λL1=5, λGIoU=2, λbce=12.
We use AdamW [6] with weight decay 1× 10−4 as the op-
timizer and apply intermediate supervision on the output of
each layer in localization and classification branches.

Training and inference recipes. Following the 1× training
schedule in [9, 1], we train all models for 12 epochs with an
initial learning rate of 2.5 × 10−5 and reduce the learning
rate by 10× at epoch 5 and 8. We apply a linear warm-
up from 2.5 × 10−6 to 2.5 × 10−5 at the first two epochs.
The mini-batch consists of 16 video clips and all models are
trained with 8 GPUs (2 clips per device), and for the model
with ViT-L backbone, both the mini-batch and the learning
rate are reduced by 1/2 of the original. For ablation stud-
ies on AVA, we set the shortest side of each video frame
to 224 for efficient exploration, and for comparisons to the
state-of-the-art methods, we set the shortest side to 288 un-
less otherwise specified. For the experiments on JHMDB,
we perform random scaling to each video frame input and



Stage Vision Transformer (Base) Vision Transformer (Large) Output Sizes
data stride 4×1×1 3×16×224×224

cube
2×16×16, 768 2×16×16, 1024

C×8×14×14
stride 2×16×16 stride 2×16×16

stage1
[

MHSA(768)
FFN(3072)

]
×3

[
MHSA(1024)

FFN(4096)

]
×6 C×[8×14×14]

token pruning

 MHSA(768)
keep rate=ρ
FFN(3072)

×1

 MHSA(1024)
keep rate=ρ
FFN(4096)

×1 C×[8×14×14×ρ]

stage2
[

MHSA(768)
FFN(3072)

]
×2

[
MHSA(1024)

FFN(4096)

]
×5 C×[8×14×14×ρ]

token pruning

 MHSA(768)
keep rate=ρ
FFN(3072)

×1

 MHSA(1024)
keep rate=ρ
FFN(4096)

×1 C×[8×14×14×ρ2]

stage3
[

MHSA(768)
FFN(3072)

]
×2

[
MHSA(1024)

FFN(4096)

]
×5 C×[8×14×14×ρ2]

token pruning

 MHSA(768)
keep rate=ρ
FFN(3072)

×1

 MHSA(1024)
keep rate=ρ
FFN(4096)

×1 C×[8×14×14×ρ3]

stage4
[

MHSA(768)
FFN(3072)

]
×2

[
MHSA(1024)

FFN(4096)

]
×5 C×[8×14×14×ρ3]

norm LayerNorm(768) LayerNorm(1024) C×[8×14×14×ρ3]
GFLOPs, ρ=0.7/1.0 134.2 / 223.8 409.4 / 707.9 -

Table 1: Architecture details of EVAD backbone. The token pruning denotes a transformer layer with keyframe-centric to-
ken pruning and is the same as the blocks in each stage when keep rate ρ=1.0. The output sizes are denoted by {C×T×S×ρ}
for channel, temporal, spatial and keep rate sizes.

set its shortest side to range from 256 to 320 pixels. For
the experiments on UCF101-24, we set the shortest side of
each video frame to 224 for training and 256 for inference.
We perform the same training recipe as in the baseline for
EVAD models under different keep rates without additional
modifications, which indicates that our method can be sim-
ply incorporated into existing models and work well.

For inference, given an input video clip, EVAD directly
predicts 100 proposal boxes and the corresponding person
detection and action classification scores. The prediction
boxes with a detection score larger than 0.7 are taken as the
final results.

C. Additional Results

We compare our EVAD with the state-of-the-art meth-
ods on AVA v2.1 in Table 2. With fewer input frames,
EVAD with ViT-B backbone outperforms most two-stage
and end-to-end models and has comparable performance to
AIA with mAP of 31.1 vs. 31.2. When we apply a larger
backbone ViT-L and use the same pre-trained dataset as
AIA, the performance can surpass AIA by a large margin.
Also, it outperforms the newly end-to-end methods TubeR
and STMixer, the latter two equipped with long-term fea-
ture banks.

Next, we provide the video-mAP results on UCF101-
24 and JHMDB. As shown in Table 3, we compare our

model e2e T × τ backbone pre-train mAP
AVA [5]∗ % 40× 1 I3D-VGG K400 15.8

LFB [11] % 32× 2 I3D-R101-NL K400 27.7

CA-RCNN [12] % 32× 2 R50-NL K400 28.0

SlowFast [2] % 32× 2 SF-R101-NL K600 28.2

ACAR-Net [7] % 32× 2 SF-R101-NL K400 30.0

AIA [10] % 32× 2 SF-R101 K700 31.2

ACRN [8]∗ ! 20× 1 S3D-G K400 17.4

VAT [3] ! 64× 1 I3D-VGG K400 25.0

WOO [1] ! 32× 2 SF-R101-NL K600 28.0

TubeR [15] ! 32× 2 CSN-152 IG+K400 31.7

STMixer [13] ! 32× 2 CSN-152 IG+K400 34.4

EVAD, ρ=0.7 ! 16× 4 ViT-B K400 31.1

EVAD, ρ=0.7 ! 16× 4 ViT-L K700 38.7

Table 2: Comparison with the state-of-the-art on AVA
v2.1. !denotes an end-to-end approach using a unified
backbone, and %denotes a two-stage approach using two
separated backbones. T × τ refers to the frame number and
corresponding sample rate. Methods marked with ∗ lever-
age optical flow input.

EVAD with the state-of-the-art frame-level detector WOO
and tubelet-level detector TubeR. Our method follows the
pipeline of WOO and is also a frame-level detector. We
achieve better performance than WOO under various set-
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Figure 1: Per-category AP for ViT baseline (26.4 mAP) and EVAD (30.7 mAP) on AVA. Categories that increase in
absolute value by more than 5% are marked in black and those more than twice the AP of the baseline are marked in green.

model
UCF24 JHMDB

f-mAP 0.20 0.50 0.50:0.95 0.20 0.50
WOO‡ [1] 76.7 74.4 55.8 26.0 70.0 69.5

TubeR∗ [15] (I3D) 81.3 85.3 60.2 29.7 81.8 80.7
TubeR [15] (CSN-152) 83.2 83.3 58.4 28.9 87.4 82.3

EVAD, ρ=1.0 84.9 76.6 60.1 30.0 78.2 77.1
EVAD, ρ=0.6 85.1 76.4 58.8 29.1 79.0 77.8

Table 3: Comparison on UCF24 and JHMDB with video-
mAP. ‡ indicates our implementation. Methods marked
with ∗ leverage optical flow input.

tings of the video-mAP. Without using tubelet annotations
for training, our method has the lower performance than Tu-
beR at multiple IoU thresholds. However, we observe that
our EVAD achieves on-par or even better performance when
increasing IoU thresholds on UCF101-24. This indicates
that our EVAD can generate high-quality action tubes.

D. Result Analysis and Visualization

Firstly, we compare the per-category performance of a
ViT baseline and our EVAD on AVA, as shown in Fig. 1.
Our method improves in 53 out of 60 categories, with sig-
nificant improvements for categories with fast movement
(e.g., bend/bow (at the waist) (+11.1%) and martial art
(+10.4%)) and categories with scene interaction (e.g., drive
(e.g., a car, a truck) (+10.3%) and play musical instrument
(+14.7%)). This illustrates the effectiveness of two core de-
signs of our EVAD, i.e., the proposed keyframe-centric to-
ken pruning can preserve tokens that contain sufficient ac-
tion semantics, and these preserved tokens can enrich each
actor spatiotemporal and scene feature through the proposed
context refinement decoder.

As seen in the experimental results, our keyframe-centric

token pruning enables EVAD to achieve comparable per-
formance to its counterpart without pruning, and we fur-
ther compare the performance of these two models on each
category of AVA, as shown in Fig. 2. We observe that al-
though the overall performance of two models is compara-
ble, the performance trend of them is inconsistent on each
category. Concretely, EVAD with token pruning perfor-
mance increases a lot in swim (+15.7%), sail boat (+9.0%),
and hand shake (+7.2%) categories, and decreases a lot in
hit (-5.6%), shoot (-7.6%), and sing to (-6.9%). We con-
sider that token pruning drops a high percentage of tokens
(66%), resulting in poor performance on categories with
small motion or interaction with small objects, and good
performance on categories with opposite characteristics.

To show the effectiveness of our token pruning method
for retaining semantic cues, we collect more visualizations
of token pruning as a supplementary of Figure 4 in our pa-
per, as shown in Fig. 3. EVAD is able to preserve impor-
tant tokens in non-keyframes, e.g., for the person putting on
clothing in example 2, it can preserve the sleeve with a large
movement deformation. Moreover, we observe that those
frames further away from the keyframe retain a greater
number of tokens in most examples. Due to the slowness
of video semantics varying in the temporal dimension [14],
frames adjacent to the keyframe have higher semantic re-
dundancy. When we perform keyframe-centric tokens prun-
ing, more tokens from adjacent frames are discarded.

Finally, to illustrate that using preserved video tokens
for context refinement can maintain the same performance
as using the whole video tokens, we visualize the attention
maps of our context refinement decoder at different token
keep rates, as shown in Fig. 4, where the attention result is
the average of the attention maps between n actors of inter-
est and M video tokens. We observe that those regions with
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(a) Categories that EVAD with token pruning outperforms EVAD without token pruning by more than 0.5%.
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Figure 2: Per-category AP for EVAD w/o token pruning (30.5mAP) and EVAD w/ token pruning (30.7 mAP) on AVA.

high attentive values of the decoder without token pruning
can be preserved at various keep rates, e.g., the hat and the
wearing hand in example 1. This further demonstrates that
our token pruning can retain semantic information for ac-
tion classification and the proposed context refinement de-
coder can enrich actor features via remaining context, which
maintain the detection accuracy.
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