Supplementary Materials to ‘FPR: False Positive
Rectification for Weakly Supervised Semantic Segmentation’

A. Per-class IoU on Localization Maps and Segmentation Maps
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Figure Al: Per-class IoU of localization maps. The results are evaluated on Pascal VOC 2012 train set.

The class-wise improvements brought by FPR as well as W-OoD are presented in Figure Al. One can see
that FPR benefits the quality of baseline CAM in almost all classes (19 out of 20), and FPR outperforms W-OoD,
especially in classes heavily suffering from co-occurrence. For example, three typical co-occurred foreground classes,
i.e., aeroplane, boat and train, gain additional +2.3%, +3.7% and +3.7% IoU from FPR compared with W-OoD,
respectively.

In addition to the qualities of localization maps, we report the per-class IoU of final segmentation maps. In
particular, we generate pseudo segmentation masks by applying AdvCAM [7] to refine FPR results. The high-
quality pseudo masks achieve 71.6% mloU on Pascal VOC 2012 ¢rain set, and they are used to train off-the-shelf
DeepLab [3] network. Following the typical setting in previous works, we evaluate the performance of DeepLab
with two backbones ResNet101 [1] and WResNet38 [10]. The per-class IoU results on Pascal VOC 2012 val set and
test set are shown in Table A1 and Table A2, respectively. Our FPR achieves considerable performance compared
to previous works.

Table Al: Semantic segmentation performance on PASCAL VOC 2012 val set.

Method ‘ bkg aero bike bird boat bottle bus car cat  chair cow table dog horse motor person plant sheep sofa train  tv | mean
SEC [ 824 629 264 61.6 276 38.1 66.6 627 752 221 535 283 65.8 578 62.3 52.5 32.5 62.6 32.1 454 453 | 50.7
PSA[l 88.2 682 306 811 49.6 61.0 77.8 661 751 29.0 66.0 40.2 804 62.0 70.4 73.7 42.5 70.7 426 681 51.6 | 61.7
SEAM[‘) 88.8 685 333 85.7 404 67.3 789 763 819 291 755 481 T79.9 738 71.4 75.2 48.9 79.8 409 582 53.0 | 64.5
FlckleNet[ll 89.5 76.6 326 746 515 711 834 744 836 241 734 474 782 740 688 73.2 478 799 370 573 64.6 | 64.9
BES|2] 89.0 734 302 816 500 633 87.6 80.1 8.5 285 825 46.5 768 787 763 7.5 423 822 373 61.5 523 | 65.6
AdeAM[ | 89.5 769 335 803 637 686 8.7 779 876 316 772 362 826 787 T35 69.8 519 819 438 709 526 | 67.5
W-OoD[¥ 91.0 80.1 341 88.1 648 683 874 84.4 89.8 301 87.8 347 875 859 79.8 75.0 56.4 84.5 47.8 804 464 | 70.7

FPR(ResNethl) 914 818 35.1 824 687 73.7 8.8 805 859 333 824 453 825 81.6 72.9 78.5 50.7 826 465 83.1 49.1 | 70.3
FPR (WResNet38) | 91.7 82.5 340 869 668 75.9 864 787 883 33.6 764 438 821 738 74.2 79.4 554 826 463 814 49.1 | 70.0




Table A2: Semantic segmentation performance on PASCAL VOC 2012 test set.
Method ‘ bkg aero bike bird boat bottle bus car cat  chair cow table dog horse mbk person plant sheep sofa train = tv mean
SEC [7] 83.5 56.4 285 64.1 236 465 70.6 585 713 232 540 28.0 681 621 70.0 55.0 38.4 58.0 399 384 483 51.7
PSA [1] 89.1 706 31.6 772 422 68.9 79.1 665 749 296 68.7 56.1 821 648 78.6 73.5 50.8 70.7 477 639 511 63.7
FickleNet[(] 90.3 77.0 352 76.0 542 64.3 76.6 761 802 257 68.6 502 746 718 783 69.5 53.8 76.5 41.8 70.0 54.2 65.3
BES[?] 89.7 76,5 30.6 785 513 647 881 793 869 269 778 53.7 789 794 788 72.5 51.7 814 51.3 55.7 514 66.9
AdvCAM[7] 89.3 793 325 80.2 56.3 62.8 87.2 80.8 87.0 289 783 413 821 80.6 7T 68.5 51.2 80.8 55.3  60.8 48.1 67.1
W-Oo0D[] 90.9 83.1 35.6 89.0 61.5 63.0 86.2 80.8 89.9 296 79.6 40.1 82.1 81.0 82.6 74.0 60.1 85.3 58.0 719 47.0 70.1
FPR (ResNet101) 91.2 85.6 33.0 852 589 69.2 87.0 796 863 354 80.4 476 84.0 82.6 779 76.6 50.6 80.1 58.9 76.6 454 | 70.1'
FPR (WResNet38) | 91.7 83.7 337 89.5 56.6 69.8 8.2 781 861 36.0 775 492 818 81.2 79.9 78.3 57.7 82.7 57.7 T7.1 478 | 70.6 '
.
B. Source Images of Negative Prototypes
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of negative prototypes of train class and the corresponding logits

In the main paper, we obtain the class-specific negative prototypes from negative representation pools by
sorting the representations in descending order according to predicted probability . and selecting the top-K
representations. We investigate the source images of negative prototypes (i.e., false positives) in terms of the
train class and present them in Figure A2. It can be observed that the sources of negative prototypes vary across
different training epochs. For example, in the first two epochs (i.e., epoch 0 and epoch 1), several railroad regions
and station regiones are excavated to generate negative prototypes, which facilitate the network to distinguish such
co-occurred pairs. At last epoch 4, there are no railroad regions involved, and the negative prototypes tend to
come from more indistinguishable regions with relatively low logits values.
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