
Supplementary Materials to ‘FPR: False Positive
Rectification for Weakly Supervised Semantic Segmentation’

A. Per-class IoU on Localization Maps and Segmentation Maps
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Figure A1: Per-class IoU of localization maps. The results are evaluated on Pascal VOC 2012 train set.

The class-wise improvements brought by FPR as well as W-OoD are presented in Figure A1. One can see
that FPR benefits the quality of baseline CAM in almost all classes (19 out of 20), and FPR outperforms W-OoD,
especially in classes heavily suffering from co-occurrence. For example, three typical co-occurred foreground classes,
i.e., aeroplane, boat and train, gain additional +2.3%, +3.7% and +3.7% IoU from FPR compared with W-OoD,
respectively.

In addition to the qualities of localization maps, we report the per-class IoU of final segmentation maps. In
particular, we generate pseudo segmentation masks by applying AdvCAM [7] to refine FPR results. The high-
quality pseudo masks achieve 71.6% mIoU on Pascal VOC 2012 train set, and they are used to train off-the-shelf
DeepLab [3] network. Following the typical setting in previous works, we evaluate the performance of DeepLab
with two backbones ResNet101 [4] and WResNet38 [10]. The per-class IoU results on Pascal VOC 2012 val set and
test set are shown in Table A1 and Table A2, respectively. Our FPR achieves considerable performance compared
to previous works.

Table A1: Semantic segmentation performance on PASCAL VOC 2012 val set.

Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mean

SEC [5] 82.4 62.9 26.4 61.6 27.6 38.1 66.6 62.7 75.2 22.1 53.5 28.3 65.8 57.8 62.3 52.5 32.5 62.6 32.1 45.4 45.3 50.7
PSA[1] 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 61.7
SEAM[9] 88.8 68.5 33.3 85.7 40.4 67.3 78.9 76.3 81.9 29.1 75.5 48.1 79.9 73.8 71.4 75.2 48.9 79.8 40.9 58.2 53.0 64.5
FickleNet[6] 89.5 76.6 32.6 74.6 51.5 71.1 83.4 74.4 83.6 24.1 73.4 47.4 78.2 74.0 68.8 73.2 47.8 79.9 37.0 57.3 64.6 64.9
BES[2] 89.0 73.4 30.2 81.6 50.0 63.3 87.6 80.1 85.5 28.5 82.5 46.5 76.8 78.7 76.3 71.5 42.3 82.2 37.3 61.5 52.3 65.6
AdvCAM[7] 89.5 76.9 33.5 80.3 63.7 68.6 89.7 77.9 87.6 31.6 77.2 36.2 82.6 78.7 73.5 69.8 51.9 81.9 43.8 70.9 52.6 67.5
W-OoD[8] 91.0 80.1 34.1 88.1 64.8 68.3 87.4 84.4 89.8 30.1 87.8 34.7 87.5 85.9 79.8 75.0 56.4 84.5 47.8 80.4 46.4 70.7

FPR (ResNet101) 91.4 81.8 35.1 82.4 68.7 73.7 88.8 80.5 85.9 33.3 82.4 45.3 82.5 81.6 72.9 78.5 50.7 82.6 46.5 83.1 49.1 70.3
FPR (WResNet38) 91.7 82.5 34.0 86.9 66.8 75.9 86.4 78.7 88.3 33.6 76.4 43.8 82.1 73.8 74.2 79.4 55.4 82.6 46.3 81.4 49.1 70.0
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Table A2: Semantic segmentation performance on PASCAL VOC 2012 test set.

Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mean

SEC [5] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7
PSA [1] 89.1 70.6 31.6 77.2 42.2 68.9 79.1 66.5 74.9 29.6 68.7 56.1 82.1 64.8 78.6 73.5 50.8 70.7 47.7 63.9 51.1 63.7
FickleNet[6] 90.3 77.0 35.2 76.0 54.2 64.3 76.6 76.1 80.2 25.7 68.6 50.2 74.6 71.8 78.3 69.5 53.8 76.5 41.8 70.0 54.2 65.3
BES[2] 89.7 76.5 30.6 78.5 51.3 64.7 88.1 79.3 86.9 26.9 77.8 53.7 78.9 79.4 78.8 72.5 51.7 81.4 51.3 55.7 51.4 66.9
AdvCAM[7] 89.3 79.3 32.5 80.2 56.3 62.8 87.2 80.8 87.0 28.9 78.3 41.3 82.1 80.6 77.7 68.5 51.2 80.8 55.3 60.8 48.1 67.1
W-OoD[8] 90.9 83.1 35.6 89.0 61.5 63.0 86.2 80.8 89.9 29.6 79.6 40.1 82.1 81.0 82.6 74.0 60.1 85.3 58.0 71.9 47.0 70.1

FPR (ResNet101) 91.2 85.6 33.0 85.2 58.9 69.2 87.0 79.6 86.3 35.4 80.4 47.6 84.0 82.6 77.9 76.6 50.6 80.1 58.9 76.6 45.4 70.1 1

FPR (WResNet38) 91.7 83.7 33.7 89.5 56.6 69.8 85.2 78.1 86.1 36.0 77.5 49.2 81.8 81.2 79.9 78.3 57.7 82.7 57.7 77.1 47.8 70.6 1

B. Source Images of Negative Prototypes
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Figure A2: The source images of negative prototypes of train class and the corresponding logits
values at different epochs.

In the main paper, we obtain the class-specific negative prototypes from negative representation pools by
sorting the representations in descending order according to predicted probability ŷc and selecting the top-K
representations. We investigate the source images of negative prototypes (i.e., false positives) in terms of the
train class and present them in Figure A2. It can be observed that the sources of negative prototypes vary across
different training epochs. For example, in the first two epochs (i.e., epoch 0 and epoch 1), several railroad regions
and station regiones are excavated to generate negative prototypes, which facilitate the network to distinguish such
co-occurred pairs. At last epoch 4, there are no railroad regions involved, and the negative prototypes tend to
come from more indistinguishable regions with relatively low logits values.

1http://host.robots.ox.ac.uk:8080/anonymous/OBQJFV.html

http://host.robots.ox.ac.uk:8080/anonymous/OBQJFV.html
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