
A. Experimental Details

A.1. Visualization of Benchmark Datasets

In this section, we show example images in different
domains from the adopted benchmark datasets, i.e., PACS
(Fig. 1a), Digits (Fig. 1b), and OfficeHome (Fig. 1c). We
can see that there exists strong appearance variation and dis-
tribution shifts across different domains, e.g., in PACS we
have both photo-like realistic pictures (Photo) and highly
abstract human sketches (Sketch). Therefore, by assigning
data from one of the domains to each client, we are able to
simulate the experimental setting with non-IID features in
FL.

(a) PACS [5] (b) Digits

(c) OfficeHome [9]

Figure 1: Example images from the selected benchmark
datasets with non-IID features. Best viewed in color.

A.2. Hyperparameter Settings

In this section, we provide more details about the training
hyperparameters, as well as their search space in Tab. 2. We
use 1 NVIDIA GeForce GTX TITAN X with 12GB RAM to
run the experiments. We use PyTorch [8] to implement our
algorithm. For all baselines and the algorithms proposed
in the previous work, we apply the same hyperparameter
search as FRAug and report the best performance. For the
PACS, OfficeHome, and Digits benchmarks, we apply data
augmentation given in Tab. 1 during the training following
the previous work [2]. For the medical dataset RxRx1, we

Augmentation Parameters
RandomResizedCrop portion: [0.6, 1.0]

RandomHorizontalFlip
probability: 0.5
(0.0 for Digits)

ColorJitter jitter degree: 0.3
RandomGrayscale probability: 0.1

Normalize
ImageNet statistics

[1]

Table 1: Data augmentations for OfficeHome, Digits and
PACS benchmarks.

follow the setting used in the WILDS benchmark [4] and
do not apply any data augmentation. We also display the
detailed hyperparameter selection for the proposed method
on different benchmarks for possible future reproduction.

In FRAug, the ratio λc used for computing the class-
wise average embedding uk

c is computed with an exponen-
tial ramp-up schedule. Specifically,

λc =

{
λ0 · exp(−5(1− r

r0
)), r < r0

λ0, r ≥ r0
(1)

where λ0 is set to 0.3, and r0 is set to 5% of the total
communication rounds (0.05 ·R).

For the weighting coefficient λsyn that controls the im-
pact of the generated residuals during the training, we use
an exponential schedule, i.e., λsyn = e0.01(r−R).

A.3. Model Architecture

Following [6], we use a 6-layer CNN with its details
listed in Tab. 3 for the Digits dataset: For the convolutional
layer (Conv2D), we list parameters with the sequence of in-
put and output dimensions, kernel size, stride, and padding.
For the max-pooling layer (MaxPool2D), we list kernel and
stride. For the fully-connected layer (FC), we list input
and output dimensions. For the Batch Normalization layer
(BN), we list the channel dimension. We adopt the last FC
layer as the prediction head, which defines the feature di-
mension with 512.

For the classification models on OfficeHome and PACS
datasets, we use the widely adopted backbone ResNet18 [3]
and change the output dimension of the last fully-connected
layer (FC) to match the class number C of the dataset. We
adopt the last FC layer as the prediction head, which defines
the feature dimension with 512.

The network architecture of the generator and the Rep-
resentation Transformation Network (RTNet) are given in
Tab. 4 and Tab. 5, respectively. For the generator, we adopt
a two-layer MLP, which takes a noise vector z with dimen-
sion dz and a one-hot encoded label y as the input, and
outputs a client-agnostic feature representation v̂. For RT-



Hyperparameter OfficeHome PACS Digits RxRx1

Shared
Parameters

Learning rate 0.01 0.01 0.01 0.01
Image size 224x224 224x224 32x32 256x256
Optimizer SGD SGD SGD SGD

Optimizer momentum 0.5 0.5 0.5 0.5
Communication rounds (R) 200 200 200 200

Shared
Search Space

Local update steps (T ) {5, 10, 20} {5, 10, 20} {5, 10, 20} {5, 10, 20}
Batch size B {16, 32, 64} {16, 32, 64} {64, 128, 256} {16, 32}

FRAug

ω and ϕ optimizer SGD SGD SGD SGD
Synthetic batch size Bsyn 16 32 64 32

ηg 0.05 0.05 0.005 0.01
ηm 0.025 0.05 0.005 0.01
α 1.5 1.25 1 1
β 1.25 1.25 1.5 1
dz 128 256 256 128

Table 2: Hyperparameter configurations for different datasets

Layer Details

1
Conv2D(3, 64, 5, 1, 2)

BN(64), ReLU(), MaxPool2D(2, 2)

2
Conv2D(64, 64, 5, 1, 2)

BN(64), ReLU(), MaxPool2D(2, 2)

3
Conv2D(64, 128, 5, 1, 2)

BN(128), ReLU(), Flatten()

4
FC(6272, 2048)

BN(2048), ReLU()

5
FC(2048, 512)

BN(512), ReLU()
6 FC(512, 10)

Table 3: Classification model architecture for the Digits
benchmark.

Layer Details

1
FC(dz + C, du)
BN(du), ReLU()

2
FC(du, du)

BN(du), ReLU()

Table 4: Generator architecture.

Layer Details

1
FC(du, dz)

BN(dz), ReLU()

2
FC(dz , du)

BN(du)

Table 5: Representation Transformation Network (RTNet)
architecture.

Net, we adopt a two-layer MLP, which takes the output of
the generator v̂ and outputs a client-specific feature residual
with dimension du.

B. Additional Results and Analyses
B.1. Ablation Study

To illustrate the importance of different FRAug compo-
nents, we conducted ablation studies on three benchmark
datasets, i.e., OfficeHome, Digit and PACS, where the re-
sults are shown in Tab. 6, Tab. 7, and Tab. 8, respectively.
First, we find that solely applying the RTNet based on the
real feature embeddings, i.e., training without a shared gen-
erator barely brings performance gain. We assume that
RTNet is restricted to the client local distribution and is
only helpful when it accesses the client-agnostic. More-
over, using the client-agnostic synthetic embeddings v̂k

leads to only minimal performance gain, highlighting the
importance of the proposed representation transformation
schema, i.e., RTNet. Moreover, the results demonstrate that
using both types of synthetic embeddings, i.e., ûk

c and ûk,
yields the largest performance boosts for both benchmarks.

G
(v̂)

RTNet
(û)

EMA
(ûc)

OfficeHome
A C P R avg

✓ 56.61±0.3 57.08±0.5 73.14±0.6 71.49±0.4 64.58±0.5

✓ ✓ 57.51±0.2 56.95±0.3 73.58±0.5 72.28±0.5 65.08±0.4

✓ 56.24±0.5 59.65±0.3 72.90±0.3 73.09±0.5 65.47±0.8

✓ ✓ 57.34±0.9 59.10±0.4 73.65±0.7 74.25±0.9 66.09±0.2

✓ ✓ 56.65±0.2 59.50±0.7 73.50±0.5 74.31±0.9 65.99±0.3

✓ ✓ ✓ 57.61±0.9 60.03±0.8 74.03±0.3 74.69±0.2 66.60±0.4

Table 6: Ablation study for different components of FRAug
on OfficeHome benchmark. The average evaluation accu-
racy of all clients are reported.



G
(v̂)

RTNet
(û)

EMA
(ûc)

Digits
MT MM SV UP avg

✓ 97.26±0.2 74.25±0.1 75.42±0.3 97.98±0.1 86.23±0.2

✓ ✓ 96.97±0.1 75.75±0.2 75.90±0.1 97.79±0.3 86.60±0.1

✓ 97.48±0.0 75.98±0.5 77.90±0.3 97.63±0.2 87.25±0.1

✓ ✓ 97.49±0.1 79.66±0.4 78.80±0.6 96.99±0.4 88.24±0.2

✓ ✓ 97.95±0.1 81.40±0.1 80.78±0.2 97.92±0.1 89.51±0.1

✓ ✓ ✓ 97.81±0.1 81.65±0.9 81.24±0.3 97.67±0.4 89.59±0.4

Table 7: Ablation study for different components of FRAug
on Digits benchmark. The average evaluation accu- racy of
all clients are reported.

G
(v̂)

RTNet
(û)

EMA
(ûc)

PACS
A C P S avg

✓ 83.80±0.5 83.95±0.3 96.64±0.2 89.12±0.4 88.38±0.5

✓ ✓ 83.43±0.3 84.51±0.2 97.19±0.1 88.86±0.2 88.50±0.2

✓ 86.06±0.7 88.61±0.9 98.24±0.1 90.37±0.4 90.82±0.5

✓ ✓ 86.54±0.8 88.19±0.3 98.44±0.3 89.78±1.0 90.74±0.4

✓ ✓ 87.34±0.5 88.47±0.9 98.64±0.6 90.95±0.4 91.35±0.1

✓ ✓ ✓ 87.50±0.9 88.33±0.9 97.66±0.5 90.70±0.6 91.05±0.3

Table 8: Ablation study for different components of FRAug
on PACS benchmark. The average evaluation accu- racy of
all clients are reported.

B.2. Analysis of Local Dataset Size

In this section, we investigate the effectiveness of our
representation augmentation technique for different sizes of
client-specific local datasets. Hereby, we vary the number
of datapoints available on each client from 100% to 10%
of its original local dataset. Tab. 10 depicts the results of
this experiment. We compare FRAug with two baseline
methods, i.e., FedAvg and Single, as well as FedBN on
OfficeHome, and conduct the experiment with 3 different
seeds. Compared to FedAvg and FedBN, the improvement
achieved by FRAug is stable across different dataset sizes,
highlighting the suitability of representation augmentation
for scenarios involving non-IID features with scarce and
large amounts of data. Compared to local training (Single)
without collaboration, we observe that the performance im-
provement yielded by federated learning methods increases
as the dataset size decreases. Note that we do not highlight
the result of oracle baseline All when it achieves the best
results, since it does not fulfill the requirement of FL, i.e.,
datasets from different clients should be decentralized and
private.

B.3. Hyperparameter Sensitivity

In this section, we further demonstrate the low sensitivity
of the proposed method to the selection of different hyper-
parameters and present the results of the experiments.

B.3.1 Effects of α, β and dz

In this section, we show the performance of local clas-
sification models in FRAug trained with different com-
binations of loss ratio in generator optimization, i.e., α,
loss ratio in RTNet optimization, i.e., β and dimen-
sion of the random noise input of both, i.e., dz on
the OfficeHome and Digits benchmark. We select α
and β from {0.5, 0.75, 1.0, 1.25, 1.5} and select dz from
{64, 128, 256, 512}. We display the results in the format
of box-plots in Fig. 2 and Fig. 3. From the results, we con-
clude that FRAug is not sensitive to the selection of these
hyperparameters.

B.3.2 Effects of ηg and ηm

In this section, we show the performance of local classifica-
tion models trained with different combinations of learning
rate for the generator, i.e., ηg and learning rate for the RT-
Net, i.e., ηm. Here, we select ηg, ηm ∈ {0.05, 0.025, 0.01}
and the results is given in Tab. 9. The results show that
FRAug is robust to the selection of the learning rate of the
generator and the RTNet.

ηm = 0.05 ηm = 0.025 ηm = 0.01
ηg = 0.05 66.37 67.00 66.33
ηg = 0.025 66.69 65.98 66.71
ηg = 0.01 66.03 66.47 66.19

Table 9: Average test accuracy using different combinations
of learning rate ηg and ηm on OfficeHome benchmark.

B.3.3 Effects of T and Breal

In this section, we further display the performance of local
classification models in FRAug trained with different com-
binations of local update steps T ∈ {5, 10, 15, 20} and the
batch size for the real training samples Breal ∈ {16, 32, 64}
in Tab. 11. The results show that FRAug can consistently
outperform FedAvg and is robust to the selection of the
batch size of real samples as well as the local update steps.

B.4. UMAP Visualizations

In Fig. 4, we provide the UMAP [7] visualization of the
feature embeddings, extracted by the models optimized by
FedAvg and FRAug in PACS benchmark. From the results,
we observe that the features extracted by FRAug show bet-
ter separability, indicating the better robustness of FRAug
against the feature distribution shift.



Client Method 100% 80% 60% 40% 20% 10%

Art

Single 73.06±1.0 69.96±1.2 67.35±1.3 62.28±1.3 50.21±1.8 35.80±0.2

FedAvg 72.43±0.9 71.06±1.6 68.48±1.4 65.48±1.5 62.28±1.4 56.38±1.1

FedBN 72.55±0.7 71.78±0.6 68.98±0.5 65.22±0.9 63.58±0.7 57.59±0.8

FRAug 73.11±0.7 72.99±1.0 69.07±1.4 66.53±1.7 64.20±0.6 57.61±0.6

All (Orcale) 67.76±1.8 66.12±0.9 67.63±1.9 63.79±0.9 62.41±1.9 56.65±0.7

Clipart

Single 80.09±1.6 77.66±0.4 74.29±1.2 68.65±0.3 53.24±1.4 45.54±0.8

FedAvg 77.57±0.5 77.50±1.2 75.74±1.0 73.03±0.2 67.05±1.3 57.21±0.9

FedBN 77.96±0.5 77.40±0.8 76.25±0.4 73.46±0.6 67.75±0.9 56.52±0.3

FRAug 78.92±1.3 77.65±1.0 76.85±0.6 73.53±1.4 67.66±1.1 60.03±0.5

All (Orcale) 78.71±1.2 78.64±1.3 76.28±1.0 73.30±0.2 68.57±2.0 58.81±1.6

Product

Single 86.51±0.9 85.56±1.8 84.08±1.5 83.03±0.9 73.95±1.8 67.04±0.8

FedAvg 85.21±1.0 85.14±1.2 83.26±1.0 82.73±1.5 76.35±1.1 73.87±0.8

FedBN 85.52±0.7 84.46±0.9 84.06±1.0 81.95±0.8 77.95±0.3 73.55±1.0

FRAug 86.94±0.5 85.91±1.3 84.42±0.9 83.55±1.3 78.38±0.4 74.03±0.8

All (Orcale) 85.81±0.3 84.98±1.3 84.68±1.6 83.10±0.9 76.57±1.8 71.39±0.3

Real
World

Single 81.57±1.5 79.74±1.3 75.92±1.3 71.94±0.8 65.83±1.5 61.16±0.7

FedAvg 82.07±0.5 81.65±0.9 80.14±0.9 78.40±1.1 75.61±1.3 70.64±0.3

FedBN 82.75±0.4 81.73±0.5 80.74±1.0 79.92±0.9 76.61±0.8 72.40±0.9

FRAug 84.14±0.5 82.95±0.4 82.26±0.2 81.23±1.2 78.06±1.1 74.58±0.4

All (Orcale) 80.31±0.8 80.28±2.0 78.90±1.5 77.29±1.0 74.62±1.7 72.63±1.3

Table 10: Model performance over different portion of the datasets, i.e., using {100%, 80%, 60%, 40%, 20%, 10%} of the
original datasets in OfficeHome benchmark. The average accurcay of all clients are reported.

Figure 2: Evaluation results of FRAug with different hyperparameter combinations, i.e., α (loss ratio in generator optimiza-
tion) and β (loss ratio in RTNet optimization) and dz (dimension of the random noise input), on OfficeHome benchmark.
Best viewed in color.
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(a) FedAvg (b) FRAug

Figure 4: UMAP visualization of the training and testing samples using the model optimized with FedAvg (left) and FRAug
(right) on PACS benchmark. Best viewed in color.


