
Appendix for FocalFormer3D

The supplementary materials for FocalFormer3D is or-

ganized as follows:

• Sec. A shows additional ablation studies on decoder

head and latency analysis for multi-modal models.

• Sec. B gives more implementation details including

network details, and extension to the multi-modal vari-

ant.

• Sec. C discusses the prediction locality for second-

stage refinements.

• Sec. D presents some visual results for multi-stage

heatmaps and 3D detection results on bird’s eye view.

A. Additional Ablation Studies

Design of the decoder head. We analyze the capability

of the decoder head in processing massive queries in Ta-

ble A - 1. Concerning the type of cross attention, with an

increasing number of queries up to 600, the computation

time of cross attention module [2] (c) grows faster than de-

formable one [13] (e). As a result, more deformable trans-

former layers can be applied. In our experiments, the trans-

former decoder head with 6 layers obtains the best perfor-

mance (66.5 mAP and 71.1 NDS) with a more affordable

computation time than the cross attention modules. Fur-

thermore, compared with point-level query embedding [1]

(g), our box-level query embedding (f) achieves +0.6 points

improvements with 3.7ms computation overhead, demon-

strating the effectiveness of box-level query.

# C.A. #Q #Layer mAP NDS Latency

(a) Full 200 1 65.8 70.5 7.6ms

(b) Full 600 1 66.1 70.9 13.1ms

(c) Full 600 2 66.3 71.1 26.2ms

(d) Deform 200 6 65.9 70.8 14.8ms

(e) Deform 600 2 66.2 70.7 7.6ms

(f) Deform 600 6 66.5 71.1 17.0ms

(g) w/o Box-pooling 65.9 70.9 –

Table A - 1. Ablation studies for box-level deformable

decoder head. “C.A.” denotes the types of cross attention

layers. “# Q” represents the number of used queries. “#

Layer” stands for the number of decoder layers. Latency is

measured for the transformer decoder head on a V100 GPU

for reference.

Latency analysis. We compare ours with other leading-

performance methods in Table A - 2. It shows that

FocalFormer-F outperforms the dominating methods, BEV-

Fusion [4] and DeepInteraction [8] in terms of both perfor-

mance and efficiency.

Methods mAP NDS Latency

BEVFusion [4] 69.2 71.8 1610ms

DeepInteraction [8] 70.8 73.4 480ms

FocalFormer3D-F (Ours) 71.6 73.9 363ms

Table A - 2. Efficiency comparison with other SOTA

methods on nuScenes dataset. Results are shown on

nuScenes test set. All methods are tested on a single V100

GPU for reference.

Results on nuScenes val set. We also report the method

comparisons on the nuScenes val set in Table A - 3.

Methods mAP NDS

CBGS [12] 51.4 62.6

CenterPoint [10] 59.6 66.8

LiDARMultiNet [9] 63.8 69.5

TransFusion-L∧ [1] 65.2 70.2

FocalFormer3D (Ours) 66.5 71.1

Table A - 3. Performance comparison on the nuScenes

val set. Results marked with ∧ indicate our reproduction.

The results of other compared methods on the nuScenes val

set were obtained from their respective original papers.

B. Additional Implementation Details

Model details for nuScenes dataset. On the nuScenes

dataset, the voxel size is set as 0.075m × 0.075m × 0.2m
and the detection range is set to [−54.0m, 54.0m] along X

and Y axes, and [−5.0m, 3.0m] along Z axis.We follow

the common practice of accumulating the past 9 frames to

the current frame for both training and validation. We train

the LiDAR backbone with the deformable transformer de-

coder head for 20 epochs. Then, we freeze the pre-trained

LiDAR backbones and train the detection head with multi-

stage focal heatmaps for another 6 epochs. GT sample aug-

mentation is adopted except for the last 5 epochs. We adopt

pooling-based masking for generating Accumulated Posi-

tive Mask, where we simply select Pedestrian and Traffic

Cones as the small objects.

Model details for Waymo dataset. On the Waymo dataset,

we simply keep the VoxelNet backbone and FocalFormer3D

detector head the same as those used for the nuScenes



dataset. The voxel size used for the Waymo dataset is set

to 0.1m × 0.1m × 0.15m. For the multi-stage heatmap

encoder, we use pooling-based masking, selecting Vehicle

as the large object category, and Pedestrain and Cyclist as

the small object categories. The training process involves

two stages, with the model trained for 36 epochs and an-

other 11 epochs trained for the FocalFormer3D detector. We

adopt GT sample augmentation during training, except for

the last 6 epochs. As the Waymo dataset provides denser

point clouds than nuScenes, the models adopt single-frame

point cloud input [10, 1].

Extension to multi-modal fusion model. We provide more

details on the extension of FocalFormer3D to its multi-

modal variant. Specifically, the image backbone network

utilized is ResNet-50 following TransFusion [1]. Rather

than using more heavy camera projection techniques such

as Lift-split-shot [6] or BEVFormer [3], we project multi-

view camera features onto a predefined voxel grid in the 3D

space [7]. The BEV size of the voxel grid is set to 180×180,

in line with 8× downsampled BEV features produced by

VoxelNet [11]. The height of the voxel grid is fixed at 10.

To obtain camera features for BEV LiDAR feature, we

adopt a cross-attention module [8] within each pillar. This

module views each BEV pixel feature as the query and the

projected camera grid features as both the key and value.

The generated camera BEV features are then fused with Li-

DAR BEV features by an extra convolutional layer. This

multi-modal fusion is conducted at each stage for the multi-

stage heatmap encoder. We leave the exploration of stronger

fusion techniques [4, 8, 5] as future work.

C. Prediction Locality of Second-Stage Refine-

ment

Recent 3D detectors have implemented global attention

modules [1] or fusion with multi-view camera [4, 8] to

capture larger context information and improve the detec-

tion accuracy. However, we observe a limited regression

range (named as prediction locality) compared to the ini-

tial heatmap prediction. To analyze their second-stage abil-

ity to compensate for the missing detection (false nega-

tives), we visualize the distribution of their predicted center

shifts δ = (δx, δy) in Fig. A - 1 for several recent lead-

ing 3D detectors, including the LiDAR detectors (Center-

Point [10], TransFusion-L [1]) and multi-modal detectors

(BEVFusion [4], DeepInteraction [8]). Statistics of cen-

ter shift (σδ < 0.283m illustrate almost all predictions

are strongly correlated with their initial positions (gener-

ally less than 2 meters away), especially for LiDAR-only

detectors, such as CenterPoint and TransFusion-L.

The disparity between small object sizes (usually <

5m×5m) and extensive detection range (over 100m×100m
meters) limits the efficacy of long-range second-stage re-

CenterPoint TransFuion-L

DeepInteractionBEVFusion

Figure A - 1. Object center shifts (δx, δy) distribution with-

out normalization between initial heatmap response and fi-

nal object predictions. The unit is a meter.

finement, despite the introduction of global operations and

perspective camera information. Achieving a balance be-

tween long-range modeling and computation efficiency for

BEV detection is crucial. FocalFormer3D, as the pioneer

in identifying false negatives on the BEV heatmap followed

by local-scope rescoring, may provide insights for future

network design.

D. Example Visualization

Example visualization of multi-stage heatmaps and

masking. We present a visual illustration of the multi-stage

heatmap encoder process in Fig. A - 2.

Qualitative results. Fig. A - 3 shows some visual results

and failure cases of FocalFormer3D on the bird’s eye view.

Although the average recall AR<1.0m reaches over 80%,

some false negatives are still present due to either large oc-

clusion or insufficient points. Also, despite accurate cen-

ter prediction, false negatives can arise due to incorrect box

orientation. Further exploration of a strong box refinement

network is left for future work.
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Figure A - 2. Example visualization of multi-stage heatmap encoder process on the bird’s eye view. The process

of identifying false negatives operates stage by stage. We show different categories with different colors for visualiza-

tion. The top three subfigures display the ground-truth center heatmaps at each stage, highlighting the missed object de-

tections. The two subfigures below display the positive mask that shows positive object predictions. The scene ids are

”4de831d46edf46d084ac2cecf682b11a” and ”825a9083e9fc466ca6fdb4bb75a95449” from the nuScenes val set. We recom-

mend zooming in on the figure for best viewing.
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Figure A - 3. Visual results and failure cases. The green boxes represent the ground truth objects and the blue ones stand

for our predictions. We recommend zooming in on the figure for best viewing.
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