
Appendix of “HumanMAC: Masked Motion
Completion for Human Motion Prediction”

A. Noise Prediction Network TransLinear
The proposed noise prediction network, i.e., TransLin-

ear, is shown in Figure 9. The input of TransLinear is the
DCT spectrum at the step t, noted as yt ∈ RL×(H+F ).
TransLinear has two linear layers for both input and out-
put to map the joint’s dimension. Besides, N TransLin-
ear blocks are stacked with skip connections [60] in the
TransLinear. Motivated by [53], we add two linear-based
FiLM modules in the transformer encoder in each TransLin-
ear block. To obtain temporal relationships, the FiLM mod-
ule is modulated by the first K-frame modulating motion’s
DCT spectrum and the diffusion time embedding. Since
the length of the first K-frame modulating motions is not
equal to the length of full motions, we simply to pad the
last frame of the modulating motion to the full length and
obtain a spectrum of the padding motion. In summary, the
TransLinear block is composed of a Transformer encoder
and some Linear operations, which is a simple architecture.
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Figure 9: The architecture of the noise prediction network
TransLinear, which takes the DCT spectrum yt at the dif-
fusion timestep t as input. TransLinear is composed of N
blocks with skip connections and a linear layer.

B. Implementation Details
To ensure reproducibility, we report the implementation

details of HumanMAC. Source codes are public at https:
//github.com/LinghaoChan/HumanMAC.

We evaluate our model on two popularly used human
motion datasets, i.e., Human3.6M [27] and HumanEva-

I [62]. Human3.6M consists of 7 subjects performing 15
different motions, and 5 subjects (S1, S5, S6, S7, and S8)
are utilized for training, while the remaining two (S9 and
S11) are utilized for evaluation. We apply the original frame
rate (50 Hz) and a 17-joint skeleton removing the root joint
to build human motions. Our model predicts 100 frames
(2s) via 25 observation frames (0.5s). HumanEva-I com-
prises 3 subjects each performing 5 actions. We apply the
original frame rate (60 Hz) and a 15-joint skeleton remov-
ing the root joint to build human motions. We predict 60
frames (1s) via 15 (0.25s) frames.

For both datasets, the batch size is set to 64. The
model is trained for 500 epochs. The optimizer is set as
Adam [31]. The learning rate is 3 × 10−4 with a multi-
step learning rate scheduler (γ = 0.9). The dropout rate
is 0.2. In the DCT/iDCT operation, the number of L is
set to be 20 and 10 for Human3.6M and HumanEva-I re-
spectively. For the denoising diffusion model, the variance
scheduler is the Cosine scheduler [48] with 1000 noising
steps. The DDIM sampler is set to 100 steps in the sam-
pling stage. For the network architecture, the number of the
self-attention [73, 94] head is set as 8. The latent dimen-
sion is 512. In the inference stage, the modulation ratio in
the HumanEva-I dataset is set as 0.5 and 1.0 for the Hu-
man3.6M dataset. For the motion switch ability, since the
content of the observation and target have been mostly re-
covered in the final denoising steps of the diffusion model,
we replace the final 20 steps of DCT-Completion with the
vanilla denoising steps, which simplifies computation.

For the experiments of zero-shot motion prediction, we
first retarget the skeleton in the AMASS dataset to the skele-
ton in the Human3.6M dataset by a widely used human mo-
tion retargeting tool1. After skeleton retargeting, we infer-
ence the AMASS motion with the model trained on the Hu-
man3.6M dataset directly.

C. Supplementary Visualization Results of
Motion Prediction on Human3.6M and
HumanEva-I

We provide more empirical evidence of visualization
comparison with DLow [89] and GSPS [45] in Figure 10.
The visualization results of motion sequences and end poses
are shown in Figure 10a and Figure 10b respectively. Cases
highlighted with red arrows in Figure 10a and end poses
with red dashed boxes in Figure 10b are failure cases that
do not satisfy the physical constraints of the human center
of gravity. By contrast, the diversity of predicted motions
by our method is more reasonable than baseline methods.

1https://theorangeduck.com/page/deep-learning-
framework-character-motion-synthesis-and-editing
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(b) Comparison on end pose visualization.

Figure 10: Visualization of motion prediction results. We present both motion sequences comparison and end-pose compari-
son. The red-black skeletons and green-purple skeletons denote the observed and predicted motions respectively.



D. Motion Switch
In Figure 11, we present more results to show the mo-

tion switch ability of our method in Figure 11. We provide
some hard cases, e.g., Sitting-Walking switch (exam-
ple D, E, F, G, I, K) and Turning (example A, C, D, E, F,
I, M, O). For transferring between two motions with a large
distribution gap, the motion of the upper and lower bodies
changes in a natural way. We provide more animations on
the project page.

E. Part-body Controllable Prediction Results
We present more results of our part-body controllable

predictions in Figure 12. As shown in Figure 12, different
from previous methods, our method supports the control-
lability of arbitrary body parts, e.g., Right Leg, Left
Leg, Right Arm, Left Arm, and Torso. This ability
will facilitate controllable automatic animation synthesis.

F. Ablation Study on Network Architecture
Motivated by the U-Net [60] design, a significant design

in our TransLinear network is the skip connection design.
As shown in Figure 8, our results show that the skip connec-
tion in the network improves the authenticity of motions.

Mechanism
Human3.6M

APD↑ ADE↓ FDE↓
w/o skip connection 6.479 0.377 0.486
w/ skip connection 6.301 0.369 0.480

HumanEva-I
w/o skip connection 6.207 0.208 0.224
w/ skip connection 6.554 0.209 0.223

Table 8: Ablation study on the skip connection designing.

G. Comparison on Motion Switch and Part-
body Controllable Ability

We compare the motion switch and part-body control-
lable ability with baselines. As shown in Table 9, our
method can achieve both motion switch and part-body con-
trollable ability. For the part-body controllable ability,
DLow [89] and GSPS [45] need a specific model training
stage to achieve it. In more detail, DLow needs to disentan-
gle the human joints into two parts for training. GSPS trains
two networks for the upper and lower body respectively. In
our implementation, we achieve this only in the inference
stage without any specific modeling. Moreover, our method
supports any part-body controllable prediction.

H. Supplementary Results of Zero-shot Motion
Prediction

We provide more empirical evidence of zero-shot motion
prediction results in Figure 13. The visualization results of

Method Switch Ability Part-body Controllable
acLSTM [97] % %

DeLiGAN [20] % %

MT-VAE [83] % %

BoM [7] % %

DSF [90] % %

DLow⋆ [89] % !

GSPS⋆ [45] % !

MOJO [95] % %

BeLFusion [5] ! %

DivSamp [14] % %

MotionDiff [75] % %

HumaMAC ! !

Table 9: Comparison on motion switch and part-body con-
trollable ability. A summary of the motion editing ability
of different methods. Methods with ⋆ indicate that they
need specific training for achieving the part-body control-
lable ability.

predicted motion sequences and end poses are shown in Fig-
ure 13a and Figure 13b respectively. As the results shown in
Figure 13, our method can predict some motions not seen in
the Human3.6M dataset, such as opening arms exaggerat-
edly and kicking sharply. See more vivid predicted motions
in the supplementary video.

I. Engineering Optimization for Evaluation
To provide more convenience for the research commu-

nity, we optimize the evaluation process from an engineer-
ing aspect. The optimization consists of two aspects: (1)
parallelized model inference; (2) parallelized metric calcu-
lation. We implement the evaluation on both parallelized
model inference and parallelized metric calculation. For
the parallelized model inference, we parallelize the serial-
ized inference process over multiple examples in [89]. We
present the simulation results of the parallelized metric cal-
culation in Table 10. The results show that our method has
∼ 6× speed up than the previous implementation2. For in-
tuitive comparison, the comparison of the simulation is also
shown in Figure 14. After the engineering optimization, the
overall (both parallelized model inference and parallelized
metric calculation) speedup is ∼ 1k × than the previous im-
plementation. The overall optimization speedup is shown
in Table 11. For engineering optimization, we perform the
experiment of engineering optimization on a machine with
30 GB memory, 32 CPU cores, and one NVIDIA Tesla
A5000 GPU. For more details, please refer to https:
//github.com/LinghaoChan/HumanMAC.

2https://github.com/Khrylx/DLow
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Figure 11: Additional motion switch results. Visualization of motion transfer using DCT-Completion from the Human3.6M
dataset.
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Figure 12: Flexible controllable motion prediction. We split the human skeleton into 5 parts: left leg, right leg, left arm, right
arm, and torso. In each row, we show the end poses of 10 examples of various motions when part-control certain body parts.
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(a) Motion sequences visualization. The first row is the ground truth. The second row indicates a sample of 10 predictions.
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(b) End pose visualization. We visualize the end pose of the prediction from three random examples.

Figure 13: Visualization results of zero-shot adaption ability on the AMASS dataset. The red-black skeletons and green-
purple skeletons denote the observed and predicted motions respectively.



# Examples w/o optimization w/ optimization Speedup
100 4.87±0.05 0.56±0.05 ↑ 869.6%
500 20.55±0.21 3.10±0.81 ↑ 662.9%

1000 43.29±0.25 6.88±1.14 ↑ 672.8%
2000 78.51±0.16 12.49±0.48 ↑ 628.6%
5000 179.78±0.69 29.95±4.04 ↑ 600.6%

Table 10: Engineering optimization simulation. We ran-
domly generate a certain number of examples for evalua-
tion. We show the results without (w/o) and with (w/) our
engineering optimization for comparison.

Method w/o optimization w/ optimization Speedup
DLow [89] ∼13 h ∼ 52 s ∼1k×

Ours - ∼16 mins ⋄

Table 11: Overall evaluation optimization comparison. The
symbol ‘-’ indicates the computation time is longer than 1
day. The symbol ‘⋄’ means that the speed improvement is
significant.

Figure 14: Engineering optimization simulation. We show
the results without (w/o) and with (w/) our engineering op-
timization for comparison. Our implementation improves
the speed significantly.


