
Supplementary Material

A. Training Detail

A.1. Network Architecture

Our SDF model is trained on 1 NVIDIA TITAN RTX
GPU within 10G memory use and a batch size of 64 for
200 epochs in about 4 days. The learning rate of the SDF
model is 0.0001, with an exponential scheduler for learning
rate decay of 0.996 each epoch. The coefficient of the LSDF
is 3e3, LNormal is 1e2, LSDF is 5e1. The SDF model has
HyperNetworks ΨS and ψS for glyph and font respectively,
each consists of MLP with 4 hidden layers and 384 hidden
dimension features, and with 192 dimension font and glyph
latent code as input. The ΦS has 5 hidden layers and 256
hidden dimension features. The activation function of ΨS ,
ψS and ΦS are RELU. The network architecture of SDF
Network is shown in Fig. B. The architecture of Hyper Net-
works is shown in Fig. A, and the same structure is applied
in the later CF networks, which are uniformly denoted by Ψ
or ψ in the subsequent figures.
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Figure A: Architecture of Hyper Network.
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Figure B: Architecture of SDF Network.

Our CF model is trained on 1 NVIDIA TITAN RTX
GPU within 5G memory use and a batch size of 64 for 500
epochs in about 2 days. The learning rate of the SDF model

is 0.0001, with an exponential scheduler learning rate de-
cay of 0.996 each epoch. The coefficient of the LCF is 3e3,
LSDFlow is 3e3. The CF model has HyperNetworks ΨC and
ψC for glyph and font respectively, each consists of 2 MLP
with 1 hidden layer and 384 hidden dimension features, and
with 192 dimension font and glyph latent code as input. The
ΦC has 6 layers and 256 dimension hidden features. The
first HyperNet of ΨC and ψC are used to predict the param-
eters of the first three layers of the ΦC , and the second is
used to predict the parameters of the last three layers of the
ΦC . The activation function of ΨS and ψS are RELU, and
the activation of ΦS are Sine, which use the method men-
tioned in SIREN [1]. The network architecture of the CF
Network is shown in Fig. C.
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Figure C: Architecture of CF Network.

We also try different architectures, as shown in Fig. D.
Experiments show that these two designs are worse than a
network where each layer of parameters is derived from two
latent codes (i.e., the network design of Fig. B and Figure
Fig. C). When the number of network layers is particularly
large, it is not reasonable to use Hypernets to predict the
parameters of all layers, because this will cause the output
dimension of the last layer of the MLP to be much larger
than the input dimension, so this design of Fig. C should be
followed in this situation.
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Figure D: Extra design of SDF Network.

A.2. Preparation for the training data

The dataset in DeepVecFont [2] has the vector sequence
of different fonts (SVG paths) and a 64×64 low-resolution
image of that sequence. We use only vector sequence (con-
sisting of lines and cubic Bézier curves) data instead of low-
resolution pixelated images when generating data.

We generated the following data for training from these
vector sequences:

• For SDF Network: The coordinates of randomly sam-
pled points on the [0, 1]2 and their SDF values s̄; The
coordinates sampled on the ground truth vector curves
(their SDF values are 0), and their corresponding nor-
mal n̄.

• For CF Network: The corners coordinate in each
glyph; The coordinates of randomly sampled points
on the [0, 1]2 and their CF values c̄; The coordinates
sampled around the corners and their CF values; The
coordinates of randomly sampled points on the [0, 1]2

and their SDF values for SDFlow supervision s̄′.

We sampled 5000 points on the [0, 1]2 and on the vector
curves respectively for training. We first render the pixe-
lated image of the entire font from the vector curves in high
resolution of 10242 to ensure an accurate SDF supervision,
then use the chamfer distance of the pixel map to calculate

the SDF value, which gives the SDF value of each pixel on
the image and then use bilinear interpolation in sampling
to derive the SDF value of any coordinate point. When
sampling on the vector curve, for each SVG path we do
a numerical integration to calculate the path length and as-
sign a different number of samples to each path weighted by
these lengths. But when sampling we sample the paramet-
ric curve linearly from 0 to 1 for t in Bézier curves or lines.
Although this is not uniform for the cubic Bézier curves, it
does not introduce much error, and because we have enough
samples, the sampling points densely cover the entire vector
font profile.

For each parametric curve, we obtain the direction of its
tangent by taking the derivative of its x and y components
separately and taking the unit vector in the direction perpen-
dicular to the direction of the tangent as the direction of the
normal vector. And since there are two opposite directions
of the vertical vector in the tangent direction, only one of
them is the normal vector, so we check the pixel value after
a very small distance (say 1 pixel) from the tangent point
along the unit normal vector we obtained, and if it is black
(inside the font), then we invert the obtained normal vector,
otherwise, we keep the obtained normal.

For CF, we sampled 5000 points on the [0, 1]2 and their
corresponding CF value for training. And for each glyph,
we generate its corners by the smoothness at the connection
of each path. We could calculate the tangents t1, t2 on the
connection with respect to two paths on both sides of it. If
the cosine similarity of this tangent is larger than a thresh-
old:

1− ⟨t1, t2⟩ > 0.01 (1)

We accept the connection as a corner. For each corner, we
sample 100 points in a box centered on it with a width of
0.1. SDFlow’s data is generated in the same way as SDF’s
data.

Note that some of the first and second control points of
the cubic Bézier curves in the data may overlap, and even
more control points overlap, leading to numerical problems,
so it’s better not to derive at t = 0 or 1 to obtain the tangent
on the start or the end of the control point, but t = δ or 1−δ,
where δ = 0.001.

B. Vectorization Detail

B.1. Extracting Ordered Point Set

The primary task of vectorization is to extract the ordered
point set on the contour from the SDF. As previously men-
tioned in the paper, we first render a binary pixel image and
perform an edge detection: the contour points would be the
black pixel whose Manhattan distance to the nearest white
pixel is less than 2 (there is a white pixel in its 8 pixels sur-
rounding), and we denote these pixels as Contour Points.
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Until this step, we only get an unordered set of points, next
we’ll sort them using search.

There are many ways to traverse these Contour Points,
the desired order is to start at a point (commonly has the
maximum x or y value in this connected block) and traverse
all contour points in the same connected block as it, and
then traverse the last point adjacent to it (i.e., traverse one
turn back to itself). Since the path we fit is a closed path, and
a closed path necessarily has loops, each connected block is
necessarily composed of one or more loops, and in general,
only one loop.

In the case of a connected block with only one loop, we
only need to use depth-first traversal from one point to tra-
verse the entire loop. In the case of multiple loops, direct
depth-first or breadth-first traversal can be problematic. So
in this case, we split the loops and then traverse each split
single loop.

B.2. Obtain the Normal of Contour

Before performing the dual contouring, we have to es-
timate their tangent vectors and normal vectors for the ob-
tained discrete contour points. We calculate the tangent di-
rection on the target contour point by averaging multiple
lines of contour points with equal order difference between
the left and right of the target contour point (e.g., the 5th
point on the left and the 5th point on the right of the target
point are connected, and the 6th point on the left and the
6th point on the right of the target point are connected, and
these two lines are averaged as the tangent direction). Of
course, other methods must exist to estimate the tangent di-
rection. The advantage of this method is that the tangent or
normal vector is smoothed and is not affected by the high-
frequency fluctuations of the surface brought about by the
neural network fitting, which in turn also allows estimating
the smoothed surface curvature and doing dual contouring
from the point of maximum surface curvature will generally
give better results.

B.3. Vectorization Process

This section is going to talk about the vectorization on
{cs, ce, {pi}}, where cs is the corner start, ce is the corner
end, and pi is a set of contour points between cs and ce, and
the results is a set of splines {s1, s2, ..., sn}. From the first
point of {pi}}, we maintain a set S = ∅ initially, constantly
add a point into S, and use a Line or a Quadratic Bézier
curve to fit points in S with minimum fitting error.

Fitting the Lines We start fitting s1 by assuming the tem-
porary spline to be fitted is a line. Initially, we take the p0 as
the start control point of the splines we want to fit. Progres-
sively, each time we add the temporary pi in, we consider it
to be the end control point of the straight line L we want to
fit, and we calculate the maximum error EL of the distance

from the point in S to the line. If it exceeds the threshold,
then there are two types of processing:

1. If ∥L∥2 ≥ lmin, output the L, empty the S, and fit next
spline.

2. If ∥L∥2 < lmin, we consider the points in S are on a
Quadratic Beziér curve Q, and start fitting this curve.

Moreover, if the temporary spline si to be fit is not s1,
then we should check the tangent on the last control point of
the previous spline si−1, and check the slope of the tempo-
rary line to be fitted, if their angle is greater than a certain
threshold thsmooth, then move to the quadratic curve fitting
step.

Maximum error

Point to be fit

Point on curve

Figure E: Fitting error between a set of coordinates and a
quadratic Bézier curve.

Fitting the Quadratic Curves Before fitting the
quadratic curve, we first calculate the maximum distance
of the points in the set to the quadratic curve to estimate the
error. Suppose we want to calculate the shortest distance
from the point in S to the quadratic curve Q. And for the
quadratic Bézier curve, although it is possible to obtain an
analytical solution in the form of solving a cubic equation
for the shortest distance from a point to a curve, that would
be a bit complicated. Instead, we obtain a set of a bunch of
points Q on Q by Taking 2|S| points at equal intervals with
respect to t on Q, and then compute the maximum distance
from the points in S to the points in Q in O(t) complexity
to make an approximate estimate of the error, as shown in
Fig. E.

For the Quadratic Bézier curve, since we have deter-
mined the start and end control points, the only thing left
to do is to determine the second control point. In addition,
we know that there are no corners between cs and ce, so
the splines we fit must be smoothly connected. There is a
good property of the Bézier curve that its tangent on the 1st
control point is the direction of its 1st control point to the
2nd control point. Thereby, we just need to find the second
control point along the tangent direction of the control point
at the end of the previous curve, we achieve this gold by a
dichotomous search.

We use the start control point as the left endpoint dl of
the dichotomous search, and the right endpoint dr of the
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Figure F: One of the cases of dichotomous search.

search is a distance from the start control points along the
direction of tangent ti−1 of the end control point of the pre-
vious spline. We find the midpoint dmid of dl and dr for
each search, and another point d∆ along a small distance
from dmid to dr. Then we calculate the fitting error E1

between the S and Q1, where Q1 is the quadratic Bézier
curve takes dmid as the second control point. And we also
calculate the fitting error E1 between the S and Q2, where
Q2 is the quadratic Bézier curve takes d∆ as the second
control point. And if E1 > E2, we let dr = dmid, other-
wise we let dl = dmid. We will repeat this process until
dr − dl < thd, where thd is the threshold indicating the
dichotomous search will terminate below this search inter-
val. Fig. F demonstrate an example of one of the cases of
this process. After that, we output dmid as the second con-
trol point of the current spline with minimum fitting error.
Similarly, when this minimum error is greater than a certain
threshold, we output the curve Q and clear S.

Insert the cs and ce After obtaining series splines from
s1 to sn, we need to insert the corner point that the first
control point of the first spline is cs and the last control
point of the last spline is ce. Start from i = 1, constantly
check the type of temporary spline si:

1. If si is a line, then make the cs the first control point
of it. If i = n or the angle between si’s tangent and the
tangent of si+1 is lower than thsmooth, then confirm the
i for ce’s insertion. Otherwise, i = i+1, and continue
checking si+1.

2. If si Quadratic curve, then make the cs the first control
point of it. Confirm the i for ce’s insertion.

For ce, the process is similar. We start from j = n,
constantly check the type of temporary spline sj :

1. If si is a line, then make the ce the last control point of
it. If j = i or the angle between sj’s tangent and the
tangent of sj−1 is lower than thsmooth, then confirm the
j. Otherwise, j = j − 1, and continue checking sj−1.

2. If si Quadratic curve, then make the ce the last control
point of it. Confirm the j.

Finally, output the {si, ..., sj} as the acquired spline(s).

C. Additional Experimental Results and Dis-
cussion

C.1. Reconstruction

Fig. J and Fig. J show some reconstruction results in ad-
dition to the result in the main text. Each of the two lines
in the diagram represents 52 upper and lower case letters of
one of the fonts.

C.2. Interpolation

Fig. L and Fig. M show some interpolation on more com-
plex fonts in addition to the result in the main text, where
the first and last lines of every 5 lines represent a font in the
dataset, Fig. L shows the case of these fonts in upper case
and Fig. M shows the corresponding case in lower case.
As can be seen from Fig. M, although there are variants
between letters (e.g., lowercase ’a’ and ’g’), or even some
fonts with only uppercase, we can still achieve a reasonable
interpolation between these glyphs.

C.3. Additional Explanation on Ablation Study

Tab. 1 shows the L1 error with and without the LPeak,
Tab. 2 shows the divergence (chamfer distance between in-
terpolated corner and original corner in the dataset) with and
without the LSDFlow. We put the average number of corners
for each letter in the dataset in the table (first row of each
group) as a comparison. As can be seen in Tab. 1 the re-
sults with LPeak are consistently better than those without it,
and the improvement consistently increases as the number
of corners in the dataset increases.

However, in Tab. 2, part of the letter with LSDFlow has
lower divergence than without it. This might happen due to
the randomness of the interpolation rate, as shown in Fig. G,
(d) to (h) demonstrate the interpolation of CF corresponding
to the original glyph (a) and (c). (b) mark out the peak of CF
of these CF, each color corresponds to one of the CFs, from
(d) to (h): black, blue, green, red, cyan, with linear interpo-
lation factor: 0, 0.25, 0.5, 0.75, 1. It can be seen from the
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(a) (b) (c)

(d) (g)(e) (f) (h)

Figure G

figure that the distance between these different color points
is not linear, this interpolation property is determined by the
network, and linearizing the interpolation or controlling the
interpolation rate will be an important topic in future work.
But overall, SDFlow improves the interpolation quality in
general, which could be more easily seen in Fig. 4 in the
main text than in the divergence metric.

C.4. Style Inference and Font Shape Completion

Also as mentioned in the main text (Fig. 6), optimizing
a latent coding in a CF network brings ambiguity, however,
optimizing a latent code with an SDF network is viable, thus
we provide the results on font generation tasks in Fig. H
and Fig. I. Our models are able to do these tasks directly
or indirectly, while we did not focus on them in the main
submission because our focus is to sharpen corners.

For the few-shot style generation task (Fig. I), we freeze
the parameter of the network and compute the ground-truth
SDF value of the target style raster image I as the input of
the network. We first initialize a latent code filled with 0,
as the input style code αSDF, fetch the glyph code βSDF cor-
responding to the given image I from the trained codebook
from SDF Net, and optimize the αSDF for the inferred style.
After obtaining the αSDF, we combine it with βSDF of other
glyphs to synthesize the full font set.

For the shape completion (Fig. H), we generate the SDF
value of the target incomplete raster image I, and use the
same process as the few-shot generation to fit a style code

Figure H: Several different glyph shape completion on dif-
ferent font styles. The bottom half of the ground-truth fonts
to be completed are masked.

αSDF. The finally inversed code will be able to generate the
complete shape.
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Figure I: One shot generation. The first ’A’ in every 2 row represents the given GT font style.

Glyph A B C D E F G H I J K L M
Corners 12.25 9.77 5.95 6.24 12.90 11.53 9.07 14.17 6.08 5.78 13.85 7.13 14.60

w/o LPeak 0.86 0.73 0.44 0.37 0.81 0.73 0.67 0.91 0.35 0.40 1.13 0.38 1.54
w LPeak 0.72 0.64 0.36 0.31 0.69 0.60 0.55 0.73 0.29 0.33 0.95 0.33 1.35
Glyph N O P Q R S T U V W X Y Z

Corners 11.41 2.79 8.13 7.75 11.56 7.13 9.11 6.85 8.54 14.67 14.67 10.92 10.14
w/o LPeak 0.99 0.20 0.50 0.65 0.82 0.56 0.56 0.46 0.63 1.68 1.06 0.71 0.65
w LPeak 0.89 0.18 0.43 0.56 0.70 0.48 0.47 0.38 0.56 1.46 0.90 0.61 0.56
Glyph a b c d e f g h i j k l m

Corners 8.83 8.28 5.47 8.04 8.04 11.55 8.67 10.17 6.43 6.42 13.12 5.46 13.08
w/o LPeak 0.59 0.69 0.31 0.65 0.48 0.74 0.75 0.77 0.37 0.50 1.18 0.34 1.15
w LPeak 0.49 0.60 0.25 0.55 0.40 0.60 0.63 0.67 0.30 0.40 0.99 0.28 0.95
Glyph n o p q r s t u v w x y z

Corners 9.27 2.73 8.70 8.47 8.91 6.76 10.60 8.15 8.11 13.74 13.93 9.78 9.88
w/o LPeak 0.64 0.15 0.67 0.67 0.60 0.43 0.60 0.52 0.51 1.32 0.86 0.73 0.54
w LPeak 0.55 0.13 0.59 0.57 0.53 0.35 0.47 0.45 0.45 1.15 0.73 0.64 0.46

Table 1: Average number of corners for each alphabet in dataset, L1 error w and w/o peak loss.
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Glyph A B C D E F G H I J K L M
Corners 12.25 9.77 5.95 6.24 12.90 11.53 9.07 14.17 6.08 5.78 13.85 7.13 14.60

w/o LSDFlow 18.44 18.98 19.99 20.40 19.75 19.08 22.09 18.06 13.18 18.01 18.92 20.15 20.99
w LSDFlow 19.17 20.11 20.70 22.91 21.09 20.84 21.31 19.64 13.37 17.60 19.42 21.43 21.33

Glyph N O P Q R S T U V W X Y Z
Corners 11.41 2.79 8.13 7.75 11.56 7.13 9.11 6.85 8.54 14.67 14.67 10.92 10.14

w/o LSDFlow 20.02 0.49 18.72 22.89 19.99 18.83 19.22 17.79 19.63 20.62 16.63 17.98 21.00
w LSDFlow 21.82 0.47 20.58 20.72 20.21 18.20 19.55 15.40 20.16 20.16 16.98 18.60 23.15

Glyph a b c d e f g h i j k l m
Corners 8.83 8.28 5.47 8.04 8.04 11.55 8.67 10.17 6.43 6.42 13.12 5.46 13.08

w/o LSDFlow 22.66 21.03 19.55 21.35 22.04 19.47 21.94 18.40 14.80 18.91 18.77 14.70 21.14
w LSDFlow 21.55 20.54 19.44 20.14 22.16 19.79 21.03 19.23 14.41 17.58 18.81 14.87 20.56

Glyph n o p q r s t u v w x y z
Corners 9.27 2.73 8.70 8.47 8.91 6.76 10.60 8.15 8.11 13.74 13.93 9.78 9.88

w/o LSDFlow 20.08 0.32 19.37 20.73 20.96 17.72 18.88 19.05 18.51 21.01 17.07 19.88 21.53
w LSDFlow 21.33 0.24 19.56 20.25 21.11 17.69 18.40 20.27 21.14 21.14 18.34 20.00 24.13

Table 2: Average number of corners for each alphabet in the dataset, Divergence w and w/o SDFlow loss.
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Figure J
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Figure K
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Figure L
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Figure M

11


