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Note that all notations and abbreviations here are consis-
tent with the main manuscript.

A. Problem Formulation Illustration
Here, we provide more insight into the formulation of the

ambiguity problem in this task (Fig. a). When occlusion
occurs, there are multiple joints, j(1) and j(2), that match
image I’s evidence (1st and 2nd columns); when estimat-
ing poses from monocular 2D images, multiple poses θ(1,1)

and θ(1,2) have similar 2D joint projections j(1) (2nd and
3rd columns). The data itself (I, j(1)) may not have com-
plete labels (the missing annotation is indicated by dashed
lines), i.e., all 2D joints j(1) and j(2) corresponding to the
image I and their corresponding poses θ. Our objective is to
use only these incomplete (I, j(1)) in the data to find all the
(I, {θ(1,1), θ(1,2), θ(2,1), θ(2,2)}). To this end, we use prior
and weakly-supervised reconstruction conditions to define

*Equal contribution.
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Figure a. An illustration of our problem formulation. One image
I corresponds to multiple feasible 2D joints j, while one joint j
corresponds to multiple poses θ. Shaded nodes represent observa-
tions, and white nodes represent those not observed from the data.

the data distribution rather than use the available data sam-
ples themselves purely. The visibility we propose naturally
considers ambiguities in occlusion, and 2D weak annota-
tions consider depth ambiguity. The figure also shows the
conditional independence of θ and I given j, c, β (red ar-
row) in Eq. (6), while θ can be predicted directly from I
(green arrow) reflected in Eq. (7).

B. Objective Derivation
B.1. KL Divergence

We here derive Eq. (8) in the main text. Given I, j, c, and
β,

KL(pϕ(θ|I, j, c, β)∥p(θ|I, j, c, β))

=

∫
θ

pϕ(θ|I, j, c, β) log
pϕ(θ|I, j, c, β)
p(θ|I, j, c, β)

dθ. (a)

By plugging the definitions of the data (Eq. (6)) and
model (Eq. (7)) distribution, we have Eq. (a) equal to,∫

θ

pϕ(θ|I) log
pϕ(θ|I)

p(θ|j, c, β)
dθ

=

∫
θ

pϕ(θ|I) log
pϕ(θ|I)

p(j|c,β,θ)p(θ)
p(j|c,β)

dθ, (b)



where p(j|c, β) =
∫
θ
p(j|c, β, θ)p(θ)dθ by Bayes’ rule in

Eq. (6). Since p(j|c, β) is constant w.r.t. θ and our learn-
able parameters ϕ, we can ignore it. Thus, Eq. (b) becomes
Eq. (8),

−
(∫

θ

pϕ(θ|I) log p(j|c, β, θ)dθ +
∫
θ

pϕ(θ|I) log p(θ)dθ

−
∫
θ

pϕ(θ|I) log pϕ(θ|I)dθ
)

=−
(

E
pϕ(θ|I)

[log p(j|c, β, θ)]︸ ︷︷ ︸
reconstruction

+ E
pϕ(θ|I)

[log p(θ)]︸ ︷︷ ︸
prior

+H(pϕ(θ|I))︸ ︷︷ ︸
entropy

)
.

B.2. Specific Forms

Figure b. Laplace and uniform distributions are used for visible
and occluded joints respectively. The green is the valid region.

We assume that all keypoints are conditionally indepen-
dent, i.e., p(j|c, β, θ) =

∏
k p(jk|c, β, θ), where k indexes

the keypoint, and jk ∈ R2.
Reconstruction. For visible keypoints, we expect them
to be accurate estimates, so we define the reconstruction
p(j|c, β, θ) in Eq. (8) as,

Laplace(jk |̂jk, bI) =
1

(2b)2
exp

(
−∥jk − ĵk∥1

b

)
, (c)

where b is the scale hyper-parameter, ĵk = proj(c, β, θ) =
sΠ(RJ (θ, β)) + t in Eq. (1) of the main text.
Prior. We follow standard practices to use pose priors for
human hands and bodies. Specifically, β are PCA coeffi-
cients for both human hands and bodies and are predicted
deterministically. We follow Eq. (2) and use an l2 regular-
ization on β. For bodies, θ are axis-angle rotations, and the
adversarial prior [9] is used. For hands, θ are PCA coef-
ficients and can be restricted simply as a uniform distribu-
tion U(θ|[−2, 2]45) [21]. Specifically, we use a softening
uniform for optimization [19, 26], i.e., penalizing the out-
of-range part along each component, and get the following
loss.

Lθ = − logSoftU(θ|[−2, 2]45)
c
=

45∑
i=1

max(0, |θi| − 2)2,

(d)
where SoftU(x|[−a, a])

c
= exp(−max(0, |x| − a)2).

Finally, we obtain the final training objective Eq. (12).
Remarks. Eq. (8) is derived for visible keypoints regardless
of occluded ones. Here, we show that the occluded key-
points do not contribute to the final loss with the assump-
tion that the occluded region is large enough relative to the
hand/human. The assumption is reasonable as we focus on
the cases of large object occlusion (i.e., HO3D) and image
truncation (i.e., AH36M) in this paper.

We consider a data distribution integrating possible un-
derlying j̄ including both visible and occluded joints as fol-
lows,

p(θ|I, c, β) =
∫
j̄

p(θ|̄j, c, β)p(̄j|I)dj̄. (e)

Similar to the derivation of Eq. (8), the only difference is
the term p(j|c, β, θ) of reconstruction term becomes,∫

j̄

p(̄j|c, β, θ)p(̄j|I)
p(̄j|c, β)

dj̄. (f)

For the term p(̄j|c, β, θ), we simply assume it is a determin-
istic projection and we get p(̄j|c, β, θ) = δ(̄j|̂j). For p(̄j|I),
we assume occluded joints have tolerance to locations and
uniformly distribute around feasible locations inside the oc-
cluded region and we get p(̄j|I) c

= U (̄j|Ω(I))p(̄j|c, β).
Here, Ω(I) denotes the occluded region. With the assump-
tion that all keypoints are conditionally independent, Eq. (f)
can be reformulated as,∫

j̄k

δ(̄jk |̂jk)U (̄jk|Ω(I))dj̄k = U (̄jk = ĵk|Ω(I)), (g)

where ĵk is the 2D projected keypoint. For the uniform dis-
tribution, we also use a softening version to penalize the
out-of-range part similar to Eq. (d), which gives,

SoftU(ϵ|[−a, a]2)
c
= exp

(
−

2∑
d=1

max (0, |ϵd| − a)
2

)
,

(h)

where the occluded region Ω is approximated by a square
S(o, 2a) centered at o with a width of 2a (Fig. b), the devi-
ation from the joint to the center ϵ = ĵk −o ∼ U([−a, a]2),
ϵd indicates the dth dimension of ϵ. We can see that when
a is large enough relative to the hand scale, i.e., |ϵd| < a,
this term becomes 0. For example, in ARHD, a is around
50 pixels and a projection is seldomly out of the occluded
region.

Omitting constant terms (i.e., additive and multiplicative
terms), we combine Eqs. (c) and (h) and have the recon-
struction term for both visible and occluded joints,{

∥jk − proj(c, θ, β)∥1, vk = 1,∑2
d=1 max(0, |ϵd| − a)2 = 0, vk = 0.

(i)



Thus, the reconstruction loss Lrec is summed over joints as,

Lrec =
∑
k

vk∥jk − ĵk∥1. (j)

C. Implementation Details
C.1. Architectures

Feature Extractors. For the toy problem, we use a 3-
layer MLP. For ARHD, we use an ImageNet [3] pre-trained
ResNet-18 with f ∈ R512 [23]. For HO3D and (A)H36M,
we use a ResNet-50 with f ∈ R2048 [7, 9]. We use the same
backbones for all methods.
Normalizing Flows. For hands, we use a lightweight and
concise implementation of the Real NVP [4]1. In particular,
it mainly includes affine coupling layers [4] and does not in-
clude random permutation [4] or multi-scale structures [4].
This is because their effects may not be so significant in
non-image generation tasks. Our NF network contains 12
coupling layers, and each coupling layer consists of 3 lin-
ear layers with 256 hidden units. For humans, we follow
ProHMR [14] to use Glow [11].

C.2. Training & Hyper-Parameters

Training. The Adam optimizer is used with default pa-
rameters [10]. The learning rate of each parameter group
is decayed from the initial 2e−4 by γ = 0.1 twice. The
batch size is set to 64. We clip the gradient norm of it-
erable parameters for more stable training. We train all
the models to converge, typically for 260 epochs. Gen-
erative models like NFs usually take longer to converge
than discriminative models [11]. We apply standard ran-
dom scale, translation, rotation, and color jitter data aug-
mentation. For hands, we set hyper-parameters with λrec =
1

0.02 = 50, λθ = 50
4 = 12.5, λH = −1. The loss is av-

eraged across batches. Effects of the hyper-parameters are
shown in Tab. c. For humans, we set hyper-parameters with
λrec =

1
0.01 = 100, λθ = λβ = 10, λH = −1.

As shown in the pipeline overview in Fig. 2, during train-
ing, we have the following steps:

1. Extract the image feature f from I;

2. Predict c and β based on f ;

3. Sample S z0 ∼ N (0, I), transform it to θ through θ =
F(z0|f), and compute LH in Eq. (11) and (4);

4. Compute and optimize the final objective Eq. (12).

It is standard to optimize log-likelihood and entropy with
SGD by taking one [12] or more samples. We find that

1Based on https://github.com/senya-ashukha/real-nvp
-pytorch/blob/master/real-nvp-pytorch.ipynb

taking more samples helps entropy optimization and con-
vergence (Fig. c); we choose S = 10 samples to balance
performance with the computational expense.

During testing, for sampling, we similarly do the first
three steps of training.

Figure c. Entropy (1K samples) curves with different MC sam-
pling numbers S = 1, 10, 50 on ARHD.

Training Strategy on H36M. We follow [14, 2, 13]’s
mixed data training with MPII [1], MPI-INF-3DHP [20],
UP-3D [15], and MS-COCO [18].

D. Data Processing Details
Toy. We take 4 Gaussians centered at (α1, α2) =
(±π

4 ,±
π
6 ) with a standard deviation of 0.05 and draw 512

samples from them. We compute the y-projection from the
poses α, and add Gaussian noise with σ = 0.01 to create a
toy dataset.
ARHD. We are motivated by [2] to consider constructing
occlusion. Instead, we simulate the hand occluded by an
object. For each image of ARHD, we fixedly select 1 of the
5 DIPs as the center and add a black circular patch with a
radius of 50 pixels. That is, we change the data before train-
ing, which will not change anymore during training. It can
be determined whether each keypoint is occluded knowing
the range of the added patch.
HO3D. HO3D V3 itself does not release ground truths for
the test dataset officially. We split the test set from the an-
notated training dataset to evaluate our metric, including

(a) Bleach cleanser (b) Cracker box (c) Box of sugar
Figure d. Some of our HO3D test samples and their visibility an-
notation.



BH. We select all frames of the ABF14, MC5, SB14, and
ShSu13 clips from the dataset as the test set (Fig. d). They
cover the actor’s hands and objects seen in the training set
as well as unseen poses and perspectives. For visibility, if
the difference between the depth calculated from the 3D co-
ordinates of the keypoint and the depth on its 2D projection
position is greater than a threshold (40 mm, the thickness of
the wrist), it is considered occluded [6]. We also perform
the manual verification of visibility annotations (Fig. d).
AH36M. The visibility of out-of-view keypoints is set to 0.

E. Evaluation Details
Visible & Occluded EPE of BH are also separately re-
ported in Tab. a supplementary to Tab. 1(a).
PJD & Gaussian Entropy. Standard deviation in PJD is
closely related to Gaussian entropy which is tractable as,

H(N (0, σ2I)) =
1

2

∑
d

(log σ2
k,d + log 2π + 1) (k)

= logΠdσk,d + C, (l)

where k and d index keypoints and dimensions, respec-
tively. The root is not included because the standard de-
viation after the centralization is 0.
Sampling & Runtime. For the computation of BH and
PJD, we draw 200 samples, following previous work [22,
24]. Results are consistent across multiple runs of training
and evaluation. STD across BH evaluations is 0.013. The
impact of sample sizes/hypothesis numbers on BH is also
shown in Fig. e. BH improves and our advantage is more
pronounced with increasing sample sizes, up to 5.65mm
lower than Det (2D Vis). It takes 0.023s per image on
A5000, 0.014s for 10, 0.028s for 1000 samples. Besides,
faithful standard deviation (PJD) requires some amount of
samples.

BH (mm)↓
Vis Occ

Det (3D) [27] 22.44 21.88
Det (2D Vis) 25.03 28.13
Multi-bodies [2] 21.97 21.53
MDN [16] 22.63 22.61
CVAE [22] 22.05 22.43
ProHMR [14] 24.25 27.36
CM-VAE [23] 23.22 23.29
WS3DPG [17] 24.23 27.55
Ours 21.91 20.40

Table a. EPE of the best hypothesis on separately visible and oc-
cluded joints on ARHD, except all.

F. SOTAs
We briefly introduce some recent state-of-the-art meth-

ods, comparing them to ours as well as their connection to
our method in the following.

0 200 400 600 800 1000
#Samples

19.5
20.0
20.5
21.0
21.5
22.0
22.5
23.0

BH
 (m

m
)

MDN
CVAE
Ours

Figure e. BH on ARHD for an increasing number of sample sizes.

(a) (b) (c)
Figure f. Probabilistic Graphical Models (PGMs) of state-of-the-
art methods, specifically, (a) MDNs [16], (b) CVAEs [22], (c)
ours, CM-VAEs [23], and WS3DPG [17]. Shaded nodes represent
observed variables, while white ones represent latent variables.

MDN [16] is designed based on Fig. f(a). It explicitly mod-
els k modes for each input. In our experiments, k is set
to 10. It is optimized by exactly calculating the likelihood
rather than sampling.
CVAE [22] is often used to do conditional generation tasks.
The network encodes conditional inputs I and multiple out-
puts j into the bottleneck latent space Z (Fig. f(b)). The
latent variable z represents the uncertainty when ambigu-
ity occurs, similar to k in MDNs. The optimization objec-
tive Evidence Lower Bound (ELBO) is also divided into a
reconstruction and KLD term like ours. Nonetheless, for
computation, an additional encoder needs to be introduced
during training but not used during test sampling. More-
over, they do not directly attach the entropy maximization
objective to the concerned θ as we do. Instead, they apply
KLD constraints on the Z space. Under our setting, we re-
port the BH results, for which oracle ground truths are used.
Multi-bodies [2] is similar to MDNs but based on a deter-
ministic framework to generate multiple hypotheses. Under
the weak supervision setting, we change the corresponding
best-of-M losses; for the best and other modes, we opti-
mize only visible keypoints. The single point k they obtain
with argmin is similar to the k and z found in MDNs and
CVAEs, respectively. However, they do not explicitly in-
centivize diversity to avoid the convergence of generated
modes. We use all hypotheses generated by 200 heads for
evaluation without requiring quantization.
ProHMR [14] also uses NFs to model θ, instead of point



prediction as deterministic in HMR [9]. In a weakly-
supervised setting, the objective is almost equivalent to our
objective without the entropy term, i.e., only the reconstruc-
tion and prior term. Note that the mode loss in the original
paper optimizes the predictive ability instead of diversity.
CM-VAE [23] & WS3DPG [17] all just use different model
choices under our framework. From the PGM in Fig. f(c),
we can merge θ and z (in other PGMs), i.e., directly treat
the parameters θ as a latent variable. The Cross-Modal VAE
(CM-VAE) [23] uses a Single Gaussian Network (SGN) to
predict from one modal I to another j, and the WS3DPG
uses an implicit Latent Variable Model (LVM), Generative
Adversarial Nets (GANs) [5] when we use NFs. For GANs,
the computation of entropy is known to be intractable. A
mutual information lower bound [8] and some empirical
losses [25] can usually be used to approximately optimize
entropy.

Furthermore, as much as possible in our experiments, we
use architectures, hyper-parameters, and training strategies
similar to the original paper.

G. More Experimental Results
G.1. Toy

(a) (b)
Figure g. Modes learned by MDNs under (a) strong and (b) weak
supervision, respectively.

MDNs under Different Supervision. In Fig. g, we show
the modes learned by MDNs under strong and weak super-
vision, respectively, in Sec. 5.2. The MDN learns all the
modes given complete strong supervision (i.e., all 4 modes)
while only fitting one of them under incomplete strong (par-
tial modes) or weak supervision (i.e., 1D projection y). This
indicates that MDNs have the ability to fit modes explicitly
existing in the data but not in other cases.

G.2. ARHD

Visibility Setting Ablation. We also discuss the use of visi-
bility in Tab. b. We show the baseline ‘Det w/ all’ and ‘Ours
w/ all’ using all 2D keypoints as weak labels for training.
Compared to ‘Ours’ with only visible keypoints, ‘Ours w/
all’ requires more labor to obtain labels without the benefits
of BH. Moreover, the occluded labels harm the diversity of
occluded keypoints.

BH (mm)↓ AH (pix)↓ PJD RD↓2D Vis 3D Occ
Det w/ all 24.33 16.48 - - -
Ours w/ all 21.83 16.10 3.55 6.09 0.58
Ours 20.35 13.42 3.86 14.42 0.27

Table b. Ablation study on the influence of keypoint visibility on
ARHD.

b λθ BH (mm)↓ AH (pix)↓ PJD RD ↓2D Vis 3D Occ

0.02
5 21.59 14.58 3.72 15.87 0.23
50 21.76 14.91 3.27 12.44 0.26
500 20.66 13.96 3.54 11.76 0.30

0.01 50 22.21 14.60 2.51 9.57 0.26
0.05 21.54 16.16 4.73 15.73 0.30

Table c. Effects of loss weights. Models are trained for 260 epochs.

Trade-Off among Accuracy, Feasibility, & Diversity.
Tab. c demonstrates a similar trend compared to those in
toy experiments. Smaller b leads to better evidence recon-
struction (i.e., lower AH and 2D Vis PJD) sacrificed with
diversity (i.e., lower 3D Occ PJD) while smaller λθ with
less feasibility constraint favors diversity as well.

BH (mm)↓ 3D Occ RD↓ Err↓
Ours 20.35 14.42 0.27 0.09
Ours+PS 19.39 12.93 0.28 0.00
Ours+Lrec 20.38 12.72 0.30 0.06

Table d. Error rate of out-of-occlusion keypoints (Err) and 3D Occ
(PJD) of ours with Post-Selection (PS) and reconstruction loss
(Lrec), respectively. Note that the Error of MDN [16] is 0.10.

Meaningful Diversity. See Tab. d supplementary to the text
described in the remarks of Sec. 5.3. The consistency of
our framework with additional information improves with-
out much loss of diversity. Though they are experiments on
ARHD, they may be more readable in Sec. 5.3’s context.

Det (2D Vis) Multi-bodies [2] MDN [16] CVAE [22] Ours
25.11 25.60 27.37 27.10 25.05

Table e. LH (n = 1) in mm on ARHD. A lower score is better.

Most Likely Hypothesis (LH). As per [17], based on the
hypothesis with the highest probability (Tab. e), which is
quantized from 200 normally sampled samples using K-
Means [17, 2, 14]. Ours improves over baselines in a single
prediction.

Consistency↑ Diversity↑ Similarity
MDN [16] 3.44 3.00 2.80Ours 3.64 3.80

Table f. User perceptual study on ARHD. Each score ranges from
1 to 5.

User Perceptual Study. We surveyed 15 people to evalu-
ate 5 hypotheses from our method vs. 5 hypotheses from
MDN [16] for 20 images from ARHD. Our hypotheses are
rated more diverse and consistent with the images (Tab. f).



BH (mm)↓ 2D Vis
Det 22.63 -
MDN [16] 20.24 6.79
ProHMR [14] 22.23 0.13
Ours 19.27 3.45

Table g. Generalization from ARHD to RHD.

ARHD

Original

Figure h. Depth ambiguity of index fingers. Our two hypotheses
are the same from the front view but different from the side view.

Generalization to the original RHD. Table g shows that all
methods generalize, though we maintain a clear advantage.
Depth Ambiguity Visualizations. We visualize two hy-
potheses and show that our method can handle depth ambi-
guity (Fig. h).

G.3. HO3D

Single-View Multi-View
Det (2D Vis) Ours MDN [16] Ours

24.87 26.49 22.30 22.15
Table h. EPE in mm of hypothesis selection with multi-view im-
ages on HO3D. A lower score is better.

Multi-View Hypothesis Selection. Apart from hypothe-
sis selection based on grasp feasibility in the manuscript
Fig. 7, we also show hypothesis selection using the multi-
view images from the set of calibrated cameras. Tab. h
shows that ours disambiguates with the help of multi-view
images and improves the EPE from 26.49 mm to 22.15 mm.
Moreover, with multi-view hypothesis selection, ours out-
performs MDN.
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