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I. More Implementation Details
I.1. Network Structure

Figure IV illustrates our network designs, including the
3D super-resolution module S3D and the 3D-aware block
in the tri-plane generator E .

For S3D (Fig. IV(a)), we use two modulated 2D convo-
lution blocks [4] to upsample the tri-planes.

For the 3D-aware block (Fig. IV(b)), we re-organize the
tri-planes according to Fig. 4 in the main text, and apply
modulated 2D convolutions for each of the three planes. We
use different affine layers to generate style codes for the
three modulated convolutions, respectively.

I.2. Training Details

We randomly sample latent code z from the normal dis-
tribution and camera pose θ from those of the training
datasets to synthesize fake images, following EG3D [1].
For each viewing ray, we sample 96 points to calculate the
volume rendering equation, including 48 points with strati-
fied sampling and 48 points with importance sampling. The
learning rates of the generator and the two discriminators
are set to 0.0025 and 0.002, respectively. We train the 2D
branch with 25M images in total, and then jointly train the
whole framework with additional 15M images. The batch
size during training is set as 32. Other training settings are
identical to those of EG3D [1].

I.3. Patch Scale

To reduce GPU memory costs and enable training at high
resolution, we render 642 patches for the 3D-to-2D imita-
tion. Thus, the patch scale is 1/4 or 1/8 of the whole image
for the 2562 or 5122 experiments, respectively. The patch
center is uniformly sampled from the whole image space.

I.4. The necessity of 2D super-resolution module

The function of the 2D super-resolution in the 2D branch
is to provide stable and high-quality guidance for the 3D
branch. Previous studies have attempted to directly learn
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Figure I. Comparison with EG3D on ShapeNet-Cars.

in 3D space without 2D super-resolution via the adversarial
loss. However, due to the restriction of modern GPU mem-
ory, they either adopted more efficient 3D representations
(e.g., radiance manifolds [2] or MPI [7]) or used patch-wise
loss (e.g., EpiGRAF [6]), yet these strategies often lead to
worse diversity and image quality due to the instability of
the GAN loss. By contrast, our imitation with the 2D branch
via LPIPS loss provides stable gradients for learning the 3D
representation, and thus supports patch-wise training with-
out sacrificing the generation quality, which is the key to our
superior results. Furthermore, our strategy also avoids trou-
blesome training tricks (e.g., the annealed strategy in Epi-
GRAF [6]) thus easier to be adapted to other frameworks.

I.5. Training time/memory of 3D-to-2D imitation

Our method requires 31 GB memory at 2562 resolution
with a batch size of 32 when trained on 8 GPUs, compared
to 27 GB memory without the 3D-to-2D imitation. Also,
our training time is 1.5 times longer than that of EG3D.

II. More Results and Comparisons
II.1. End-to-end 3D-to-2D imitation learning

Our initial motivation for the two-stage training is to
leverage the powerful prior of an existing 2D generator
(with 2D super-resolution) to guide our 3D branch. In fact,
the overall framework (including both 2D and 3D branches)
can be trained end-to-end from scratch. We conduct a sim-
ple experiment on FFHQ at 2562 with identical hyper pa-
rameters as described in the main paper and achieve an FID
of 5.03 for the 3D branch, which is comparable to the two-
stage training result.
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Figure II. Comparison of 2D and 3D branches. (Zoom in for better
visualization.)

II.2. More results on faces

Figures V and VI illustrate more visual comparisons.
Compared to EG3D [1], we have more detailed geometry
and smoothly tilted strips in spatiotemporal texture images,
indicating better 3D consistency. Similar to ours, EpiGRAF
and GMPI also generate high-resolution images via direct
rendering. Yet, we have superior image quality as shown in
Fig. VI.

Figures VII and VIII show more of our results on FFHQ
and AFHQ -v2 Cats datasets, respectively.

Referring to the supplemental video for animations.

II.3. Results on general objects.

Our method can handle general objects with wider range
of camera views. In Fig. I, we compare our 3D branch with
EG3D on ShapeNet-Cars (1282) and achieve comparable
image generation quality.

II.4. Comparison of our 2D and 3D branches

Our 3D branch can generate fine details comparable to
the 2D branch. In Fig. II (red arrows), we show details
produced by the 3D branch that are not visible in the 2D
branch.

Our 3D branch clearly produces finer geometry details
compared to the alternatives with 2D super-resolution (see
Fig. II). As shown, the finer geometry details are not ran-
dom noises but features of hair, teeth, wrinkles, etc (purple
arrows). Furthermore, we can generate diverse nose shapes

Figure III. Failure case.

(yellow arrows), complex jaws with beards (green arrows),
and wrinkles (blue arrows) on the geometries.

III. Limitations and Future Works

We thoroughly discuss the limitations of our method and
possible future improvements.

First, our learned 3D branch still has inferior image qual-
ity in terms of FID compared to the 2D branch. This may
come from the current design of the 3D super-resolution
module and the learning strategy. Specifically, our 3D
super-resolution module adopts a similar structure to that
of the 2D branch in order for a fair comparison, which
may not be the optimal solution. More advanced struc-
tures, including leveraging 3D-aware convolutions could be
further explored for better 3D super-resolution. Besides,
the LPIPS loss during 3D-to-2D imitation leverages a pre-
trained VGG network which is trained on images of 2242

resolution. It may not well capture the perceptual infor-
mation of a small image patch. Leveraging more recent
pre-trained models [3, 5] or even multiple feature extractors
could be a possible choice. Exploring better discriminators
for the patch-level adversarial loss in the 3D branch could
also benefit the training process.

Second, our method can produce incorrect geometries
in certain cases. As shown in Fig. III, a typical failure
case is geometry discontinuity, where the face region is not
smoothly connected with the head region, leading to ob-
vious artifacts at side views. These artifacts also occur in
the original EG3D. We believe this problem can be alle-
viated by introducing more profile images for training, as
currently the training data are mostly frontal images so that
the planes for depicting side-view features may not be well-
trained. In addition, certain generated geometry structures
such as hairs and cat whiskers are stuck to the surfaces in-
stead of correctly floating in the volumetric space, as shown
in Fig. VII and VIII. We conjecture this is due to that the
random sampling strategy with limited queries during vol-
ume rendering is hard to model thin structures, as also indi-
cated by a previous method [2]. Therefore, a more advanced
3D representation that could efficiently capture these com-
plex structures is worthy of ongoing exploration.

Finally, our training strategy also requires training the
2D branch in advance, which increases the overall train-



ing time compared to the original EG3D. A possible way
to reduce the training time is to jointly train the 2D and 3D
branches from scratch. We leave it for our future work.
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Figure IV. Network designs. (a) 3D super-resolution module S3D . (b) 3D-aware block.
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Figure V. Comparison w/ EG3D [1]. Our method generates images with comparable quality to those of EG3D, while producing 3D
geometries with finer details and multiview sequences with better 3D-consistency. Referring to the supplemental video for animations.
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Figure VI. Comparison w/ EpiGRAF [6] and GMPI [7] . Referring to the supplemental video for animations.



Figure VII. Our results on FFHQ dataset. Referring to the supplemental video for animations.



Figure VIII. Our results on AFHQ-v2 Cats. Referring to the supplemental video for animations.


