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This document provides additional results for

• More comparison with the F-STVSR methods in Sec-
tion A1;

• Replacing Raft-lite in MoTIF with other pre-trained
flow estimation network in Section A2;

• Fourier analysis of forward and backward motion in
Section A3;

• Subjective comparison in Section A4;

• Implementation details in Section A5.

A1. More Comparisons with F-STVSR Meth-
ods

This experiment compares our MoTIF with the state-of-
the-art F-STVSR methods. Similar comparison is provided
in the main paper, following the setting of VideoINR [2], in
which the training is done on Adobe240fps [10] dataset and
with 2 reference frames. Here, we follow the common test
protocol [14, 15] of the F-STVSR task to perform training
with 4 reference frames.

In the present case, we have access to IL−1, I
L
0 , I

L
1 , I

L
2 ,

in generating a high-resolution video frame IHt , t ∈
[−1, 2]. To extend our scheme to 4 reference frames,
(1) we follow ZSM [14] to generate the reference
features FL

−1, F
L
0 , FL

1 , FL
2 and the intermediate features

FL
(−1,0), F

L
(0,1), F

L
(1,2). (2) We then have the motion la-

tent TL
0 encode jointly information from multiple pairs

{ML
0→i, Z

L
0→i}, i = −1, 1, 2 of the forward flow map

M0→i and its reliability map ZL
0→i, with i referring to the

reference frames except IL0 . The same process is repeated
to generate the other motion latents TL

i , i = −1, 1, 2. (3)
Based on these motion latents, we aggregate features FH

i

from the 4 reference frames to synthesize FH
t , ZH

t . (4)

*Both authors contributed equally to this work.

During the decoding of the RGB values, the intermediate
feature is chosen from FL

(−1,0), F
L
(0,1), F

L
(1,2) depending on

which interval t sits in. For example, if t = −0.3, the inter-
mediate feature is FL

(−1,0), and if t = 1.8, the intermediate
feature is FL

(1,2).
From Table A1, we see that our MoTIF, although trained

for the C-STVSR task, shows comparable performance to
RSTT-L [3] and TMNet [15] on the F-STVSR task. Both
RSTT-L [3] and TMNet [15] are the state-of-the-art one-
stage F-STVSR methods. They, however, are not able to
support the C-STVSR task. VideoINR [2] is not included in
this comparison since it accepts only 2 reference frames.

A2. Raft-lite vs. PWC-Net in MoTIF
Following the same experimental setup in Section A1,

Table A2 provides additional results by replacing Raft-
lite [12] in MoTIF with the pre-trained PWC-Net [11]. As
shown, the change in PSNR/SSIM is minor. This indicates
that our MoTIF can work well with well-behaved, off-the-
shelf flow estimation networks.

A3. Fourier Analysis Results
Figs. A1 and A2 analyze the signal spectra of the for-

ward and backward motion representations. We take a ver-
tical slice of pixels in the first columns of Fig. A1 and A2 as
examples, and represent their forward or backward motion
over 33 consecutive video frames as functions of time. At
each vertical pixel location, we conduct 1-D Fourier trans-
form of the motion signal along the temporal dimension. In
each figure, (1) the first column superimposes the first and
the last frames of the test sequence, (2) the second column
shows the forward motion from the first frame to the last
frame, and (3) the third and the fourth columns visualize the
spectra of the forward and backward motion, respectively.

In Fig. A1, at each spatial location, the 1-D Fourier trans-
form along the temporal dimension is applied to the hor-



Table A1: Performance comparison on the F-STVSR task. Red, blue, and bold indicate the best, the second best, and the third
best performance, respectively. Quality metrics: PSNR/SSIM. Our MoTIF, although trained for the C-STVSR task, shows
comparable performance to RSTT-L and TMNet on the F-STVSR task. Both RSTT-L and TMNet are the state-of-the-art
one-stage F-STVSR methods. They are not able to support the C-STVSR task. See Section A1.

VFI
Method

VSR
Method Vid4 [7] Vimeo-Fast [16] Vimeo-Medium [16] Vimeo-Slow [16]

SuperSloMo[6] Bicubic 22.84 / 0.5772 31.88 / 0.8793 29.94 / 0.8477 28.37 / 0.8102
SuperSloMo[6] RCAN[17] 23.80 / 0.6397 34.52 / 0.9076 32.50 / 0.8884 30.69 / 0.8624
SuperSloMo[6] RBPN[4] 23.76 / 0.6362 34.73 / 0.9108 32.79 / 0.8930 30.48 / 0.8584
SuperSloMo[6] EDVR[13] 24.40 / 0.6706 35.05 / 0.9136 33.85 / 0.8967 30.99 / 0.8673

SepConv[9] Bicubic 23.51 / 0.6273 32.27 / 0.8890 30.61 / 0.8633 29.04 / 0.8290
SepConv[9] RCAN[17] 24.92 / 0.7236 34.97 / 0.9195 33.59 / 0.9125 32.13 / 0.8967
SepConv[9] RBPN[4] 26.08 / 0.7751 35.07 / 0.9238 34.09 / 0.9229 32.77 / 0.9090
SepConv[9] EDVR[13] 25.93 / 0.7792 35.23 / 0.9252 34.22 / 0.9240 32.96 / 0.9112

DAIN[1] Bicubic 23.55 / 0.6268 32.41 / 0.8910 30.67 / 0.8636 29.06 / 0.8289
DAIN[1] RCAN[17] 25.03 / 0.7261 35.27 / 0.9242 33.82 / 0.9146 32.26 / 0.8974
DAIN[1] RBPN[4] 25.96 / 0.7784 35.55 / 0.9300 34.45 / 0.9262 32.92 / 0.9097
DAIN[1] EDVR[13] 26.12 / 0.7836 35.81 / 0.9323 34.66 / 0.9281 33.11 / 0.9119

STARnet[5] 26.06 / 0.8046 36.19 / 0.9368 34.86 / 0.9356 33.10 / 0.9164
Zooming SlowMo[14] 26.31 / 0.7976 36.81 / 0.9415 35.41 / 0.9361 33.36 / 0.9138

TMNet[15] 26.43 / 0.8016 37.04 / 0.9435 35.60 / 0.9380 33.51 / 0.9159
RSTT-L[3] 26.43 / 0.7994 36.80 / 0.9403 35.66 / 0.9381 33.50 / 0.9147

Ours 26.43 / 0.8013 36.88 / 0.9427 35.53 / 0.9372 33.46 / 0.9148

Table A2: PSNR/SSIM comparison of the pre-trained
Raft [12] and PWC-Net [11] in MoTIF.

Flow Estimator Vid4 Vimeo-Fast Vimeo-Medium Vimeo-Slow

Raft-lite [12] 26.43 / 0.8013 36.88 / 0.9427 35.53 / 0.9372 33.46 / 0.9148
PWC-Net [11] 26.40 / 0.8001 36.89 / 0.9432 35.52 / 0.9366 33.48 / 0.9161

izontal component (namely, the x-component) of the dis-
placement vectors. The spectra shown are magnitude re-
sponses. We see that forward motion usually has much
stronger responses in the low-frequency bands, especially
the DC band (temporal frequency=0), than backward mo-
tion. On the other hand, backward motion has more high-
frequency responses. This implies that the back motion rep-
resentation is typically less smooth temporally.

In Fig. A2, a similar analysis is conducted on the vertical
component (namely, the y-component) of the displacement
vectors. Interestingly, both the forward and backward mo-
tion representations have similar frequency responses. This
may be because most video sequences have less and smaller
vertical motion.

A4. More Qualitative Results
Figs. A3 , A4 , A5 , and A6 provide more subjective

quality comparisons. Our MoTIF preserves more high-
frequency details than the other competing methods in tests
with both in-distribution and out-of-distribution temporal
scaling factors (cf. the buildings in Fig. A3, the heads of
the ducks in Fig. A3, the edge of the butterfly in Fig. A4,
the paper posted on the door of the train in Fig. A4, the li-
cense plate of the taxi in Fig. A5, and the legs of the race
horse in Fig. A6 ).

A5. Implementation Details
A5.1. Reliability Maps

Following [8], we quantify the reliability of a forward
optical flow map based on (1) the intensity warping error
Zint
0→1, (2) the flow warping error Zflow

0→1 , and (3) the local
variances of the flow map. Consider ML

0→1 as an example.
These metrics are given, respectively, by

Zint
0→1 = ∥IL0 − ω(IL1 ,M

L
0→1)∥, (1)

Zflow
0→1 = ∥ML

0→1 − (−ω(ML
1→0,M

L
0→1))∥, (2)

Zvar
0→1 =

√
G((ML

0→1)
2)−G(ML

0→1)
2, (3)

where ω(A,B) denotes the operation of backward warp-
ing A based on B, e.g. IL0 − ω(IL1 ,M

L
0→1) ≡ IL0 (p) −

IL1 (p + ML
0→1(p)), ∀p, with p denoting the pixel coordi-

nates in IL0 , and G(·) denotes the 3 × 3 Gaussian kernel.
From Eq. (1), the intensity warping error evaluates the pre-
diction error of IL0 by backward warping IL1 using ML

0→1.
The flow warping error in Eq. (2) checks the consistency
between ML

0→1 and ML
1→0. It is defined as the prediction

error of ML
0→1 by backward warping ML

1→0 using ML
0→1.

The sign flipping −ω(ML
1→0,M

L
0→1) accounts for the dif-

ference between ML
0→1 and ML

1→0 in their directions.

A5.2. Network Architecture

We further illustrate details of our network architecture
in Fig. A7 and Fig. A8. As shown in Fig. A7, our motion
encoder takes N group of motion features as input, where



N is the number of motion samples we use. Each motion
feature includes the forward motion, the reliability map and
two constant maps describing the source time and destina-
tion time of the forward motion, respectively.
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Figure A1: Fourier analysis of forward and backward motion. The first column shows the slice of pixels whose for-
ward/backward motion are analyzed. The second column is the forward optical flow map. The third column is the temporal
signal spectra of the horizontal components of the forward displacement vectors. The forth column is the temporal signal
spectra of the horizontal component of the backward displacement vectors. The spectra shown are magnitude responses.
Forward motion usually has much stronger responses in the low-frequency bands than backward motion. See Section A3.



Figure A2: Fourier analysis of forward and backward motion. The first column shows the slice of pixels whose for-
ward/backward motion are analyzed. The second column is the forward optical flow map. The third column is the temporal
signal spectra of the vertical component of the forward displacement vectors. The forth column is the temporal signal spectra
of the vertical components of the backward displacement vectors. The spectra shown are magnitude responses. Forward
and backward motion have similar frequency responses. This is because most video sequences have less and smaller vertical
motion. See Section A3.
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Figure A3: Subjective quality comparison. The temporal scaling factor of the upper example is 8 (in-distribution), and that
of the lower example is 6 (out-of-distribution). Zoom in for better visualization. See Section A4.
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Figure A4: Subjective quality comparison. The temporal scaling factor of the upper example is 8 (in-distribution), and that
of the lower example is 6 (out-of-distribution). Zoom in for better visualization. See Section A4.
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Figure A5: Subjective quality comparison with different spatial scaling factors. We display the middle frame at t = 0.5.
From left to right, the spatial scaling factors are 2, 4 (in-distribution) and 6 (out-of-distribution), respectively. Zoom in for
better visualization. See Section A4.
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Figure A6: Subjective quality comparison with different spatial scaling factors. We display the middle frame at t = 0.5.
From left to right, the spatial scaling factors are 2, 4 (in-distribution) and 6 (out-of-distribution), respectively. Zoom in for
better visualization. See Section A4.



Figure A7: The network architecture of our motion encoder EM . N is the number of motion samples we use. See Section
A5.

Figure A8: Shown from left to right are the network architectures of our S-INF, ST-INF and decoder, respectively.


