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1. Illustration of the Discontinuity in Adaptive
RBFs

As shown in Fig. 1, consider a simple 1D case where
x1 ≈ x2 are two points located on the boundary where
U(x) changes. Let U(x1) = {1}, U(x2) = {2} be the
sets of their closest RBF. From Eq. (2) in the paper, the
aggregated neural feature gb(x) is computed as gb(x) =∑

i∈U(x) φ(x, ci,Σi)wi. Generally, for adaptive RBFs,
φ(x1, c1,Σ1) ̸≈ φ(x2, c2,Σ2) and w1 ̸≈ w2. Therefore,
gb(x1) ̸≈ gb(x2). This reveals a discontinuity in gb(x)
when x changes from x1 to x2. On the other hand, for grid-
based RBFs that use linear interpolation as kernel function,
both φ(x1, c1) and φ(x2, c2) are close to 0, so gb(x) does
not contain such discontinuity. We combine adaptive and
grid-based RBFs through feature concatenation to balance
fitting accuracy and interpolation smoothness.

2. Details on RBF Initialization
We utilize the EM-style Lloyd’s K-Means algorithm to

initialize RBF positions using all points. The number of
RBFs is calculated based on parameter budget. The initial-
ization is conducted only once per scene, before the start of
training. We do not split or merge RBFs during training.
During weighted K-Means, the initial centers are generated
by weighted random sampling. We do not repeat this ran-
dom sampling for multiple times because we observe it does
not have major influence on final performance. The E-M
steps are the following:

aij =

1, if i = argmin
k

∥xj − ck∥2,

0, otherwise.
(1)

ci =

∑
j aijwjxj∑
j aijwj

. (2)
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Figure 1. Illustration of the discontinuity in adaptive RBFs.

aij is an indicator variable: aij = 1 if xj is assigned to
cluster i and aij = 0 otherwise. For efficiency, we iterate
Eq. (1)(2) for only 10 steps as the results are already close to
convergence and sufficient for our use case. We implement
the E-M steps with parallel KD Tree and vectorized centroid
update.

3. More Ablation Study
3.1. RBF Initialization

To evaluate the effects of RBF initialization, we compare
weighted K-Means with grid initialization, random initial-
ization and weighted random initialization. As shown in
Fig. 2, we use an image from DIV2K dataset [2, 17] and
conduct 2D image fitting. To facilitate visualization, we
only use 15129 RBFs in each baseline. We visualize the po-
sition and shape parameters of RBFs as yellow ellipses, and
show the fitting error maps and PSNR. As demonstrated in
the top two rows, weighted K-Means initialization achieves
the highest fitting accuracy. Among the other three base-
lines, weighted random initialization has a competitve per-
formance while random initialization leads to the worst re-
sult.

In the bottom four rows, we further evaluate the effec-
tiveness of using gradient backpropagation to finetune RBF
parameters during training. We first use a set of reasonable
learning rates for position and shape parameters, which are
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Figure 2. Evaluation on RBF Initialization. We compare different RBF initialization methods in columns: grid initialization, random
initialization, weighted random initialization and weighted K-Means initialization. We also evaluate different RBF finetuning strategies
using gradient backpropagation (with only L2 loss on pixel value) in rows: no finetuning, grid-searched learning rates, large learning rates.
For each result, we visualize the RBF parameters as yellow ellipses and show fitting error maps.

obtained through grid search on the baseline with weighted
random initialization. As shown in the middle two rows,
gradient backpropagation (with only L2 loss on pixel value)
only provides minor improvement compared to the first two
rows. Besides, the update to the RBF parameters is barely
noticeable for grid initialization. Then, we experiment with
large learning rates in the last two rows. It can be seen that
the RBF parameters can be largely changed from their ini-
tialization. However, this leads to significant performance
drop for all baselines. The above results validate the bene-
fits of RBF initialization.

3.2. Adaptive Positions and Generalized Interpola-
tion

Here, we evaluate the effects of using adaptive positions
for RBFs and generalizing N-dimensional linear interpola-
tion to RBFs with shape parameters. We conduct this abla-
tion study on image, SDF and NeRF tasks, and the results
are shown in Fig. 3. The parameter count of each model
is 567K, 856K and 17.7M respectively for the three tasks.
Based on the results, both adaptive positions and general-
ized interpolation are beneficial to performance.
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Figure 3. Evaluation on the adaptive positions and generalized interpolation of RBFs. “No Adaptive Positions”: the positions of
RBFs are fixed to a grid structure. “No Generalized Interp.”: the interpolation function is N-dimensional linear interpolation.

4. More Implementation Details
Architecture. For the decoder network gm, except NeRF
task, we use a 3-layer MLP (2 hidden layers + 1 output
layer) with a network width of 64 neurons, where rectified
linear unit (ReLU) activation function is applied to the sec-
ond hidden layer. The MLP uses a very small part of the pa-
rameters (e.g., only 7K in image fitting). For the NeRF ex-
periments on the Synthetic NeRF dataset [12], we use a sin-
gle Softplus layer as density decoder (same as TensoRF [4])
and use the rendering equation encoding from NRFF [9] as
color decoder. For the NeRF experiments on the real LLFF
Forward-Facing dataset [11], we adopt the same network
architecture as K-Planes-hybrid [7], which uses a 2-layer
MLP for density decoder and a 3-layer MLP for color de-
coder.

Experiments on 2D Image Fitting. The neural features
wi of adaptive RBFs have a channel dimension of 32.
The neighboring RBFs U(x) of a point x is its 4 near-
est neighbors. For Instant NGP [13], we use their official
open-sourced codes and hyper-parameters in the compari-
son experiments. Note that some results in their paper use
smaller hash table sizes, hence fewer parameters but also
lower PSNR. For MINER [15], we use the implementation

from [1]. The original MINER paper does not report their
results on the DIV2K dataset [2, 17]. All methods use a
batch size of 262144 and are trained for a same number of
steps.

Experiments on 3D SDF Reconstruction. The neural
features wi of adaptive RBFs have a channel dimension of
16, and the size of neighborhood U(x) is 8. We use a grid
resolution of 10243 for marching cubes. IoU is evaluated
on these grid points. For normal angular error (NAE), it
is computed similarly as normal consistency [6], but is in
unit of degree. Specifically, let P1, P2 be randomly sam-
pled points on two mesh surfaces, NN(x, P ) be the closest
point to x in point set P , and nf (x) ∈ R3×1 be the unit face
normal of point x, NAE is calculated as:

NAE(P1, P2) =
1

2
· 180

π
· (

1

|P1|
∑

p1∈P1

arccos
(
nf (p1)

Tnf (NN(p1, P2))
)
+

1

|P2|
∑

p2∈P2

arccos
(
nf (p2)

Tnf (NN(p2, P1))
)
).

(3)



Avg. Armadillo Bunny Dragon Buddha Lucy XYZ Dragon Statuette David Chameleon Mechanism

NAE↓
NGLOD5 [16] 6.58 3.60 4.81 2.85 3.28 4.73 5.66 7.53 3.43 15.91 14.00
NGLOD6 [16] 6.14 3.35 4.47 2.76 3.02 4.28 5.15 6.46 3.22 14.64 14.03
I-NGP [13] 5.70 2.89 1.96 2.30 2.73 3.57 4.51 6.00 2.88 11.96 18.21
Ours 4.93 2.83 2.00 2.22 2.69 3.36 4.14 5.30 2.62 10.42 13.73

I-NGP400K [13] 6.39 3.20 2.22 2.64 3.18 4.29 4.96 6.82 3.27 13.04 20.31
Ours400K 5.53 2.89 2.14 2.35 2.88 3.70 4.44 6.07 2.85 11.96 16.00

IoU↑
NGLOD5 [16] 0.9962 0.99974 0.97664 0.99964 0.99977 0.99979 0.99981 0.99969 0.99960 0.99456 0.99237
NGLOD6 [16] 0.9963 0.99979 0.97696 0.99969 0.99977 0.99986 0.99983 0.99980 0.99963 0.99528 0.99237
I-NGP [13] 0.9994 0.99997 0.99968 0.99995 0.99996 0.99997 0.99996 0.99993 0.99993 0.99893 0.99605
Ours 0.9995 0.99994 0.99943 0.99995 0.99996 0.99996 0.99996 0.99995 0.99993 0.99765 0.99837

I-NGP400K [13] 0.9992 0.99995 0.99974 0.99994 0.99994 0.99996 0.99995 0.99990 0.99990 0.99820 0.99448
Ours400K 0.9994 0.99996 0.99964 0.99995 0.99995 0.99997 0.99995 0.99991 0.99992 0.99706 0.99767

Table 1. 3D Signed Distance Field Reconstruction. Per-object breakdown of the quantitative metrics (NAE↓ and IoU↑) in Table 2 of the
paper.

Experiments on Neural Radiance Field Reconstruction.
For the Synthetic NeRF dataset [12], the channel dimension
of adaptive RBFs is 32 and the size of neighborhood U(x) is
5. We first train the grid-based part for 1000 steps, which is
then used to distill scene information and conduct RBF ini-
tialization. For the real LLFF Forward-Facing dataset [11],
the channel dimension of adaptive RBFs is 16 and the size
of neighborhood U(x) is 8. The grid-based model used for
distillation is trained for 2000 steps while the full model is
trained for 38000 steps.

5. Limitations and Future Work

In this work, we have primarily focused on local neu-
ral representation. It could be promising to explore the
combination with other activation functions in MLP (e.g.,
WIRE [14]). Besides, in our current implementation, the
multipliers m,m0 are treated as hyper-parameters and are
not trainable. We tried training them along with other pa-
rameters, but observed little improvement. A possible rea-
son is that they act as frequencies and would require tailored
optimization techniques.

Our method demonstrates high representation accuracy
in spatial domains; however, similar to Instant NGP [13]
and Factor Fields [5], we have not explored spatial-temporal
tasks such as dynamic novel view synthesis. By extend-
ing radial basis functions into higher dimensions or using
dimension decomposition techniques, our method can po-
tentially be applied to these tasks. We also observe that it
is difficult to represent large-scale complicated signals with
both high accuracy and small model size, which is a com-
mon challenge for local neural fields methods. An interest-
ing future direction would be to design basis functions with
more adaptive shapes and long-range support.

6. Additional Results
6.1. 2D Image Fitting

Fig. 4 compares the results on 4 ultra-high resolution im-
ages that are not displayed in the paper due to page limit.
For the error maps, we calculate the mean absolute error
across color channels for each pixel. To highlight the differ-
ence among methods, we set the color bar range as 0 ∼ 0.01
(the range of pixel value is 0 ∼ 1).

For the Pluto image (Fig. 4 row 2 in the paper), when
fitting the 16 megapixel version of it, our method can reach
44.13 dB PSNR with 7.8M parameters and 50s training.

6.2. 3D SDF Reconstruction

Table 1 shows per-object breakdown of the quantitative
metrics (NAE↓ and IoU↑) in Table 2 of the paper. Fig. 5, 6
show the qualitative results, where the numbers of trainable
parameters for Instant NGP and ours are 950K and 856K.

We further compare with BACON [10] and let our
method use the same training settings as them. BA-
CON uses 531K parameters while our models only use
448K. Averaging over 4 scenes (Armadillo, Lucy, XYZ
Dragon, Statuette), the normal angular errors (NAE↓) are
5.89◦(BACON) vs. 4.53◦(Ours).

6.3. Neural Radiance Field Reconstruction

Table 2 and 3 demonstrate the per-scene quantitative
comparisons (PSNR↑, SSIM↑, LPIPSV GG↓, LPIPSAlex↓)
on the Synthetic NeRF dataset [12] and the real LLFF
Forward-Facing dataset [11]. Fig. 7 and Fig. 8 show
more close-up and full-image comparisons on the Synthetic
NeRF dataset [12]. Fig. 9 shows full-image comparisons on
the real LLFF Forward-Facing dataset [11].
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Figure 4. 2D Image Fitting. Leftmost column or top left quarter shows the fitted images of our method and the resolution of the images.
The other columns or quarters show the error maps of each method, along with the number of trainable parameters (“# Tr. Params”)↓,
PSNR↑, SSIM↑ and LPIPSAlex↓. For the last image, its resolution is too high to compute LPIPSAlex. “Girl With a Pearl Earring”
renovation ©Koorosh Orooj (CC BY-SA 4.0).
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Figure 5. 3D SDF Reconstruction. Qualitative comparisons between NGLOD6 [16], Instant NGP [13] and ours. For the results in this
figure, the number of trainable parameters of Instant NGP is 950K, while that of ours is 856K. (To be continued in the next page.)
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Figure 6. 3D SDF Reconstruction. Qualitative comparisons between NGLOD6 [16], Instant NGP [13] and ours. For the results in this
figure, the number of trainable parameters of Instant NGP is 950K, while that of ours is 856K.



Methods Avg. Chair Drums Ficus Hotdog Lego Materials Mic Ship

PSNR↑
NeRF [12] 31.01 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65
Mip-NeRF 360 [3] 33.25 - - - - - - - -
Point-NeRF [18] 33.31 35.40 26.06 36.13 37.30 35.04 29.61 35.95 30.97
Plenoxels [8] 31.71 33.98 25.35 31.83 36.43 34.10 29.14 33.26 29.62
Instant NGP [13] 33.18 35.00 26.02 33.51 37.40 36.39 29.78 36.22 31.10
TensoRF [4] 33.14 35.76 26.01 33.99 37.41 36.46 30.12 34.61 30.77
Factor Fields [5] 33.14 - - - - - - - -
K-Planes [7] 32.36 34.99 25.66 31.41 36.78 35.75 29.48 34.05 30.74

Ours 34.62 36.74 26.47 35.14 38.65 37.53 34.30 36.17 31.94
Ours3.66M 33.97 35.82 26.19 34.08 38.11 36.75 34.32 35.49 31.03

SSIM↑
NeRF [12] 0.947 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856
Mip-NeRF 360 [3] 0.962 - - - - - - - -
Point-NeRF [18] 0.962 0.984 0.935 0.987 0.982 0.978 0.948 0.990 0.892
Plenoxels [8] 0.958 0.977 0.933 0.976 0.980 0.976 0.949 0.985 0.890
Instant NGP [13] 0.963 0.985 0.940 0.982 0.982 0.982 0.949 0.989 0.893
TensoRF [4] 0.963 0.985 0.937 0.982 0.982 0.983 0.952 0.988 0.895
Factor Fields [5] 0.961 - - - - - - - -
K-Planes [7] 0.962 0.983 0.938 0.975 0.982 0.982 0.950 0.988 0.897

Ours 0.975 0.988 0.946 0.987 0.987 0.986 0.980 0.992 0.930
Ours3.66M 0.971 0.985 0.942 0.984 0.985 0.984 0.980 0.990 0.919

LPIPSV GG↓
NeRF [12] 0.081 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206
Mip-NeRF 360 [3] 0.039 - - - - - - - -
Point-NeRF [18] 0.050 0.023 0.078 0.022 0.037 0.024 0.072 0.014 0.124
Plenoxels [8] 0.049 0.031 0.067 0.026 0.037 0.028 0.057 0.015 0.134
Instant NGP [13] 0.051 0.023 0.076 0.027 0.038 0.021 0.065 0.020 0.137
TensoRF [4] 0.047 0.022 0.073 0.022 0.032 0.018 0.058 0.015 0.138
Factor Fields [5] - - - - - - - - -
K-Planes [7] 0.062 0.027 0.089 0.056 0.034 0.047 0.068 0.029 0.148

Ours 0.034 0.015 0.059 0.014 0.021 0.015 0.031 0.008 0.110
Ours3.66M 0.039 0.019 0.065 0.019 0.025 0.018 0.034 0.010 0.124

LPIPSAlex↓
Point-NeRF [18] 0.028 0.010 0.055 0.009 0.016 0.011 0.041 0.007 0.070
Instant NGP [13] 0.028 0.0097 0.0540 0.0174 0.0142 0.0085 0.0296 0.0072 0.0863
TensoRF [4] 0.027 0.010 0.051 0.012 0.013 0.007 0.026 0.009 0.085
K-Planes [7] 0.031 0.0125 0.0527 0.0209 0.0170 0.0096 0.0303 0.0091 0.0968

Ours 0.018 0.0067 0.0409 0.0085 0.0085 0.0057 0.0106 0.0044 0.0614
Ours3.66M 0.022 0.0088 0.0454 0.0101 0.0109 0.0070 0.0119 0.0060 0.0735

Table 2. Neural Radiance Field Reconstruction. Per-scene quantitative comparisons (PSNR↑, SSIM↑, LPIPSV GG↓, LPIPSAlex↓) on
the Synthetic NeRF dataset [12]. Best 3 scores in each scene are marked with gold , silver and bronze . “-” denotes scores that are
unavailable in prior work. For LPIPSAlex, since the scores of NeRF [12], Mip-NeRF 360 [3], Plenoxels [8] and Factor Fields [5] are
unavailable in prior work, we exclude these methods in this metric.



Ground TruthOursK-PlanesTensoRFInstant NGPPoint-NeRF
Figure 7. Neural Radiance Field Reconstruction. More close-up comparisons on the Synthetic NeRF Dataset [12]. Leftmost column
shows the full-image results of our method.
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Figure 8. Neural Radiance Field Reconstruction. Full-image comparisons on the Synthetic NeRF Dataset [12].



Methods Avg. Room Fern Leaves Fortress Orchids Flower T-Rex Horns

PSNR↑
NeRF [12] 26.50 32.70 25.17 20.92 31.16 20.36 27.40 26.80 27.45
Mip-NeRF 360 [3] 26.86 - - - - - - - -
Plenoxels [8] 26.29 30.22 25.46 21.41 31.09 20.24 27.83 26.48 27.58
TensoRF [4] 26.73 32.35 25.27 21.30 31.36 19.87 28.60 26.97 28.14
K-Planes [7] 26.92 32.64 25.38 21.30 30.44 20.26 28.67 28.01 28.64

Ours 27.05 32.80 25.48 21.81 30.98 20.03 28.57 28.06 28.68

SSIM↑
NeRF [12] 0.811 0.948 0.792 0.690 0.881 0.641 0.827 0.880 0.828
Mip-NeRF 360 [3] 0.858 - - - - - - - -
Plenoxels [8] 0.839 0.937 0.832 0.760 0.885 0.687 0.862 0.890 0.857
TensoRF [4] 0.839 0.952 0.814 0.752 0.897 0.649 0.871 0.900 0.877
K-Planes [7] 0.847 0.957 0.828 0.746 0.890 0.676 0.872 0.915 0.892

Ours 0.849 0.955 0.822 0.769 0.891 0.675 0.868 0.916 0.895

LPIPSV GG↓
NeRF [12] 0.250 0.178 0.280 0.316 0.171 0.321 0.219 0.249 0.268
Plenoxels [8] 0.210 0.192 0.224 0.198 0.180 0.242 0.179 0.238 0.231
TensoRF [4] 0.204 0.167 0.237 0.217 0.148 0.278 0.169 0.221 0.196
K-Planes [7] 0.194 0.147 0.223 0.242 0.154 0.250 0.165 0.199 0.173

Ours 0.179 0.134 0.209 0.238 0.128 0.271 0.147 0.158 0.149

LPIPSAlex↓
TensoRF [4] 0.124 0.082 0.155 0.153 0.075 0.201 0.106 0.099 0.123
K-Planes [7] 0.102 0.066 0.130 0.153 0.068 0.151 0.088 0.071 0.092

Ours 0.090 0.059 0.111 0.127 0.056 0.160 0.072 0.057 0.075

Table 3. Neural Radiance Field Reconstruction. Per-scene quantitative comparisons (PSNR↑, SSIM↑, LPIPSV GG↓, LPIPSAlex↓) on
the real LLFF Forward-Facing dataset [11]. Best 3 scores in each scene are marked with gold , silver and bronze . “-” denotes scores
that are unavailable in prior work. For LPIPSAlex, since the scores of NeRF [12], Mip-NeRF 360 [3] and Plenoxels [8] are unavailable in
prior work, we exclude these methods in this metric.



Ground TruthOursK-PlanesTensoRF

Figure 9. Neural Radiance Field Reconstruction. Full-image comparisons on the real LLFF Forward-Facing dataset [11].
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