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In this supplementary material, we provide details about
i) implementation in §1, ii) model ensemble in §3, iii) envi-
ronment & metric in §4.

1. Implementation Details
AudioGoal model. Following [4], we set output dimen-
sions of CNNs for top-down map Gt, audio intensity map
At and binaural St as 512. The CNNs for Gt and At have
three convolution layers each, with kernel sizes of (8, 4, 3),
strides of (4, 2, 1) respectively. The CNN for St has three
convolution layers with kernel sizes of (5, 3, 3) and strides
of (2, 1, 1). Each layer’s output channel size is (32, 64, 32),
which is the same for all CNNs. We select ReLU as the acti-
vation function. The GRU is of 1 layer with 512-dimension
hidden units. The size of the action map Mt is 9× 9.
PointGoal model. We initialize the PointGoal policy by the
weight provided in [7], which is trained in Matterport3D
and iGibson environment. We modified two parts of the
model: we i) replace the encoder for the previous action
with the CNN encoding Gt, and the output dimension keeps
the same, which is 32; ii) replace the FC layer predicting
low-level actions with the one predicting Mt with the shape
of 9 × 9. Then the model is finetuned under the PointGoal
task on the Soundspaces training split by PPO [6], and the
depth encoder is fixed. The hyperparameters of PPO [6] are
the same with [4].

2. Model for Comparison Details
We compare our method with following existing meth-

ods and model baselines in Table 1 of the main paper:

• Random Agent: an agent randomly selects action and
stops when it reaches the audio goal.

• Direction Follower [4]: a hierarchical model with a
model predicting the audio goal direction and one model
deciding the when the agent stops.

• Frontier Waypoints [2, 4]: a hierarchical model that in-
tersects the predicted direction with the frontiers of the
explored area and selects that point as the next waypoint.
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• Supervised Waypoints [1, 4]: a hierarchical model that
uses the RGB frame and audio input to predict waypoints
in its field of view (FoV) with supervised learning.

• Gan et al. [5]: AudioGoal agent that predicts the audio
goal location from audio alone and then navigates with
an path planner on an occupancy map. The accuracy on
Soundspaces is provided by [4].

• AV-Nav [3]: An end-to-end RL agent predicting low-
level actions via visual-audio observations.

• AV-WaN [4]: An end-to-end RL agent with geometric
and acoustic maps predicts the intermediate goal and gen-
erates trajectory with an analytical path planner.

3. Model Ensemble Details
Table 1 summarizes the properties of the fused models in

§4.4 of the main paper. We elaborate on the implementation
details of the strategies as follows:

• Re.Loss: spectrogram reconstruction loss. We add a
decoder at the 3rd CNN layer of St’s encoder. The de-
coder is one layer CNN with kernel size (1, 1), stride
(1, 1), and output channel 2. We then interpolate the de-
coder’s output to the same shape as the input spectrogram
to compute the L1 loss.

• Spec.Aug: spectrogram data augmentation, which is
composed of the time mask and the frequency mask. We
start the data augmentation at 1M steps when the time
and frequency mask’s size is 1, and then the mask size
increases by 1 every 1M steps.

• Sample.Aug: the data augmentation for training sam-
ples. We double the training set by sampling more tra-
jectories from the environment and changing the target
sound of episodes from the origin training set.

• MFCC: an extra CNN which encodes the binaural MFCC
(Mel-frequency cepstral coefficients). The CNN is of the
same structure as the encoder for St. The output of this
CNN is concatenated with the other three encoders’ as the
input of GRU.

4. Environment & Metric
SoundSpaces [3]. SoundSpaces provides room impulse re-
sponse (RIR) to simulate realistic sound that comes from
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name Strategies Matterport3D Unheard
Re.Loss Spec.Aug Sample.Aug MFCC SPL↑ SR↑ SNA↑ SoftSPL↑

A 40.9 56.7 30.6 46.3
B ✓ ✓ 43.5 60.4 31.9 47.7
C ✓ ✓ 42.4 57.5 32.1 48.2
D ✓ ✓ 43.1 60.1 30.2 47.5

Table 1: Summary of fused models. A is the baseline model from [4]. See details in §3.

the target at each position in the scene. The RIR’s spa-
tial resolution of Replica is 0.5m, and Matterport3D is 1m.
SoundSpaces maintains a navigability grid graph of the en-
vironment, which is of the same resolution as RIR. The
agent can only move from the current node to a neighbour
one on the graph. So the action space of Soundspaces is A
={MoveForward, TurnLeft, TurnRight, Stop.}
Metric. The definition of the metrics we used in the paper
are as follows:
• SR: Success Rate, the proportion of success episodes, i.e.,

where the agent takes the Stop action exactly at the goal
location within 500 action steps.

• SPL: Success weighted by Path Length, where success is
weighted by path efficiency. Let Si be a binary indica-
tor of success, pi be the length of agent’s path, li be the
shortest path:

SPL =
1

n

N∑
i=1

Si · li
max(li, pi)

(1)

• SoftSPL: the patched SPL, where the binary success is
replaced by progress toward the goal. let di be the initial
distance to the goal and ei be the distance to the goal at
the end of episodes:

SoftSPL =
1

n

N∑
i=1

(1− ei
di

)
li

max(li, pi)
(2)

• SNA: Success weighted by the Number of Actions. Let
Si be a binary indicator of success, pai be the number of
agent’s actions and lai be the number of actions taken for
the shortest path:

SNA =
1

n

N∑
i=1

Si · lai
max(lai , p

a
i )

(3)
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