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A. Proof and theoretical analysis

A.1 Approximation of quantization error minimiza-
tion to the objective of performance optimization

In this study, we consider an additional term, the gradient,
to better measure the performance degradation during
quantization (described in Sec. 3.1). The following theorem
proves that the minimization of the quantization error with a
gradient term approximates the objective, minimization of
performance degradation, during quantization.

Theorem 3.1 Let (xT , y) be the (feature, label) of input data,
L denote the training loss, w indicate the weights, and wq

represent the quantized weights. Then argminwq E(||(wq −
w) · ∂L

∂wq ||2) ≃ argminwq |L((xT , y;wq) − L((xT , y;w)|,
where |L((xT , y;wq) −L((xT , y;w)| is the performance
decrement after quantization.

Proof. By Taylor series expansion [1],

L(xT , y;w) =

P∑
p=0

L(p)(xT , y;wq)

p!
||wq − w||p2 +Rp(wq)

≃
P∑

p=0

L(p)(xT , y;wq)

p!
||wq − w||p2

= L(xT , y;wq)− ∂L(xT , y;wq)

∂wq
||wq − w||2,

which implies

|L((xT , y;wq)−L((xT , y;w)|

≃ ||(wq − w) · ∂L(xT , y;wq)

∂wq
||2.

Therefore,

argmin
wq

E(||(wq − w) · ∂L
∂wq

||2)

= argmin
wq

||(wq − w) · ∂L(xT , y;wq)

∂wq
||2

≃ argmin
wq

|L((xT , y;wq)−L((xT , y;w)|.

In Theorem 3.1, according to Taylor series of the training
loss function, the change of loss approximates the quantiza-
tion error with the gradient, i.e., the impact of the change
of weight on the training loss. Thus, as illustrated in Sec. 3,
E(||(wq − w) · ∂L

∂wq ||2) is used to evaluate the performance
decrement during quantization.

A.2 Increasing quantization error on old task data
in new task learning

In Sec. 4.1, we investigate the forgetting problem in
quantization, by analyzing the increment of quantization
error on old task data after learning the new tasks.

Theorem 4.1 Based on Definition 4.1, and denote wq∗
s

as the optimal solution on task s, then ξ(xTs ;wq∗
t ) ≥

ξ(xT
s ;wq∗

s ),∀s ≤ t.

Proof. Since

wq∗
s = argmin

w
ξ(xTs ;w),

then
ξ(xTs ;wq∗

s ) ≤ ξ(xTs ;w), ∀w.

Hence,
ξ(xT

s ;wq∗
s ) ≤ ξ(xTs ;wq∗

t ),∀s ≤ t.



According to Theorem 4.1, the quantized weights after
learning new tasks converge to a separate solution, instead
of the optimum on the old task data. Therefore, the quanti-
zation error on old data increases after the update of model
weights based on the incoming new task data, demonstrat-
ing the forgetting problem in quantization. We will further
analyze the increment of quantization error in Theorem 5.1
and derive the upper bound in Appendix A.3.

A.3 Derivation of the upper bound of increasing
quantization error in new task learning

In Sec. 5.1, we investigate the issue that incurs the
forgetting problem and derive the upper bound of the
increment of quantization error as follows.

Theorem 5.1 Based on Definition 4.1 and Theorem 4.1, the
increment of the quantization error is ξ(xT

s ;wq
t )− ξ(xTs ;wq

s)

which has an upper bound E(||(wq
s − ws) · ∂L(xs;wq

t )

∂wq
t

||2) +

E(||(wq
t − wq

s) ·
∂L(xs;wq

t )

∂wq
t

||2), ∀s ≤ t.

Proof. The increment of the quantization error is

ξ(xTs ;wq
t )− ξ(xTs ;wq

s) ≤ ξ(xT
s ;wq

t )

= E(||(wq
t − ws) ·

∂L(xs;wq
t )

∂wq
t

||2)

= E(||(wq
t − wq

s + wq
s − ws) ·

∂L(xs;wq
t )

∂wq
t

||2)

= E(||(wq
t − wq

s) ·
∂L(xs;wq

t )

∂wq
t

+ (wq
s − ws) ·

∂L(xs;wq
t )

∂wq
t

||2)

≤ E(||(wq
s − ws) ·

∂L(xs;wq
t )

∂wq
t

||2)

+ E(||(wq
t − wq

s) ·
∂L(xs;wq

t )

∂wq
t

||2), ∀s ≤ t.

Theorem 5.1 indicates that the increment of quantization
error is induced from not only the intra-task error E(||(wq

s −
ws) · ∂L(xs;wq

t )

∂wq
t

||2) but also the inter-task error E(||(wq
t −

wq
s) ·

∂L(xs;wq
t )

∂wq
t

||2). Existing quantization approaches mainly
target minimizing the former, whereas the latter has not been
fully investigated. Therefore, in this paper, we focus on
minimizing the inter-task quantization error generated in the
new task learning to alleviate the forgetting problem. In
the forward process, we propose ProxQ to regularize the
consistency of the search spaces learned from separate tasks
to reduce the space shift incurring the inter-task quantization
error (see Sections 5.2.1 and 5.2.2). In the backward process,
on the other hand, we reduce the inter-task quantization error

obtained from the ProxQ process by a regularization loss
(see Sec. 5.2.3).

A.4 Biased prediction result toward new tasks in-
duced by a limited amount of replay data

As described in Sec. 5.3, recent lifelong learning (LL)
research is developed to alleviate the forgetting problem in
full-precision network training by employing replay data
(old task data) retrained in new tasks. However, only a
limited amount of old task data can be stored as replay data
in quantization-aware training due to the memory constraint,
which poses an imbalance issue. The prediction result tends
to be biased toward the class data that mostly appear in new
tasks due to the majority of new data compared to the limited
amount of the old task data.

To validate the biased performance under the imbalance
issue, in the following theorem, we analyze the change
in prediction probability after employing replay data with
a replay ratio, i.e., the proportion of training data in old
tasks sampled for retraining in new task learning. If the
change decreases with the lower replay ratio, the prediction
performance with limited replay data is close to the biased
result toward the new tasks.

Theorem 5.2 Let πt|s
j := PYt|{Xt,X

replay
s }(yt = j|xt) stand

for the prediction probability of the t-th task data xt on the
j-th class, incorporated with the training of replay data from
the s-th task Xreplay

s , where s < t, and πt
j := PYt|Xt

(yt =
j|xt) represent the prediction probability without replay
data. Denote nt

j as the sample size of Xt on the j-th class
and rsj as the sample size of Xreplay

s on the j-th class. If
rsj ≤ δjn

t
j , ∀j, where δj ∈ [0, 1] is the replay ratio on the

j-th class and rsj , then |πt|s
j − πt

j | < δj · (1 +
∑K

i=1 δin
t
i∑K

i=1 nt
i

),
∀j,∀s < t.

Proof. First,

π
t|s
j = PYt|{Xt,X

replay
s }(yt = j|xt)

=
P{Xt,X

replay
s }|Yt

(xt|yt = j)

P{Xt,X
replay
s }(xt)

· P{Yt,Y
replay
s }(yt = j)

=
P{Xt,X

replay
s }|Yt

(xt|yt = j)

P{Xt,X
replay
s }(xt)

·
rsj + nt

j∑K
i=1(r

s
i + nt

i)
,

(1)
and

πt
j = PYt|Xt

(yt = j|xt)

=
PXt|Yt

(xt|yt = j)

PXt(xt)
· PYt

(yt = j)

=
PXt|Yt

(xt|yt = j)

PXt(xt)
·

nt
j∑K

i=1 n
t
i

,

(2)



which implies that

π
t|s
j − πt

j

=
P{Xt,X

replay
s }|Yt

(xt|yt = j)

P{Xt,X
replay
s }(xt)

·
rsj + nt

j∑K
i=1(r

s
i + nt

i)

−
PXt|Yt

(xt|yt = j)

PXt
(xt)

·
nt
j∑K

i=1 n
t
i

.

(3)

According to Eq. (3),

|πt|s
j − πt

j |

≤ max

{
P{Xt,X

replay
s }|Yt

(xt|j)
P{Xt,X

replay
s }(xt)

,
PXt|Yt

(xt|j)
PXt

(xt)

}

·

∣∣∣∣∣ rsj + nt
j∑K

i=1(r
s
i + nt

i)
−

nt
j∑K

i=1 n
t
i

∣∣∣∣∣ .
(4)

Since π
t|s
j ≤ 1, and πt

j ≤ 1, we can derive from Eq. (1) and
Eq. (2) that

P{Xt,X
replay
s }|Yt

(xt|yt = j)

P{Xt,X
replay
s }(xt)

≤
∑K

i=1(r
s
i + nt

i)

rsj + nt
j

, (5)

and
PXt|Yt

(xt|yt = j)

PXt(xt)
≤

∑K
i=1 n

t
i

nt
j

, (6)

which implies that

The analytical result in Theorem 5.2 shows that the predic-
tion probability under the training with limited replay data,
i.e., a small replay ratio δj ,∀j, is close to the result without
the employment of replay data. Accordingly, Theorem 5.2
demonstrates that limited replay data tends to cause a biased
prediction result toward the new tasks. In other words, the
forgetting problem is not solved. To address the imbalance
issue, we design a rebalancing strategy for reweighting the
influences of data on performance (see Sec. 5.4).

A.5 Derivation of the rebalancing factor in the Bal-
anced Lifelong Learning (BaLL) loss

To rebalance the biased performance analyzed in
Theorem 5.2, we design a BaLL loss to reweight the
influence of replay data in new task learning (see Sec. 5.4).
In the following theorem, we derive the BaLL loss from the
approximation of the balanced prediction result.

Theorem 5.3 Based on Theorem 5.2, suppose there are to-
tal K classes in {Xt, X

replay
s }. Let the original prediction

loss be Lpred = −
∑K

j=1 log πj = −
∑K

j=1 log
eϕj∑K

k=1 eϕk
,

where ϕj is the prediction result on the j-th class. As-
sume that ϕj under imbalanced class distribution pj ap-
proximates to the balanced result ϕ∗

j after adding a rebal-
ancing term log(sj), i.e., ϕj + log(sj) = ϕ∗

j . Then the

balanced loss is LBaLL = −
∑K

j=1 log
sje

ϕj∑K
k=1 ske

ϕk
, where

sj = e
ϕj(

1
Kpj

−1)
, ∀j.

Proof. First, since the rebalanced prediction result is ϕ∗
j =

ϕj + log(sj), the balanced lifelong learning loss LBaLL =

−
∑K

j=1 log
e
ϕ∗
j∑K

k=1 eϕ
∗
k

can be formulated as

LBaLL = −
K∑
j=1

log
eϕ

∗
j∑K

k=1 e
ϕ∗
k

= −
K∑
j=1

log
eϕj+log(sj)∑K

k=1 e
ϕk+log(sk)

= −
K∑
j=1

log
sje

ϕj∑K
k=1 ske

ϕk

.

(7)

In the following, we derive sj = e
ϕj(

1
Kpj

−1)
,∀j in The-

orem 5.3. Here, the prediction is based on the training of
replay data. Accordingly, the prediction on the j-th class
in t-th task denoted as ϕt

j is PYt|{Xt,X
replay
1:(t−1)

}(yt = j|xt),

where the notations except Xreplay
1:(t−1) follow Theorem 5.2,

and Xreplay
1:(t−1) represents the union of replay data in all of the

old tasks, task ID from 1 to (t−1). To simplify the notations,
we ignore the scripts of task ID and denote ϕj as P (y = j|x)
in the subsequent derivations for sj in Eq. (7).

Proof. We first expand ϕj = P (y = j|x) as follows.

ϕj = P (y = j|x) = P (x|y = j)

P (x)
· P (y = j)

=
P (x|y = j)

P (x)
· pj

=
P (x|y = j)

P (x)
· rj + nj∑K

i=1 (ri + ni)
,∀j,

(7)

where rj stands for the total number of employed replay
data on j-th class from all old tasks, and nj represents the
number of data on j-th class in the current (new) task1.

Compared to Eq. (7), the balanced class distribution in
expectation is p∗j = 1

K , ∀j = 1, 2, ...,K. Accordingly, the

1Note that if mostly data in class j appear in old tasks, then nj ≃ 0.
Moreover, rj is usually small. According to Eq. (7), the prediction proba-
bility on the j-th class, ϕj , is minor compared to the probability on other
classes, which induces the imbalance issue described in Sec. 5.3.



balanced prediction result is

ϕ∗
j =

P (x|y = j)

P (x)
· 1

K
, ∀j. (7)

Plugging the results in Eq. (7) and Eq. (7) into ϕj +
log(sj) = ϕ∗

j , we obtain sj as follows.

sj = eϕ
∗
j−ϕj

= e
P (x|y=j)

P (x)
· 1
K −P (x|y=j)

P (x)
·pj

= e
P (x|y=j)

P (x)
·( 1

K −pj)

= e
ϕj
pj

·( 1
K −pj)

= e
ϕj ·( 1

Kpj
−1)

, ∀j.

(7)

Theorem 5.3 derives the BaLL loss with the rebalancing
factor. For the rebalancing strategy, if replay data belongs
to a minority class j in new task learning, i.e., a small class
distribution pj , then the weighting of loss increases by the
large rebalancing factor. Therefore, the influence of replay
data is able to be reweighted (increased), especially for the
class data rarely shown in the new tasks.

B. Quantization results of MobileNet-V2 on
Office-31 and ResNet-50 on ImageCLEF

Table 2 in the main paper has presented the results of
domain-based multi-task quantization, including ResNet-
50 on Office-31 and MobileNet-V2 on ImageCLEF, and
validated LifeQuant with significant accuracy improvements
and forgetting rate reduction, especially on the lightweight
architecture, MobileNet-V2, and at low quantization bits.

In this section, we evaluate LifeQuant on more cases,
MobileNet-V2 on Office-31 and ResNet-50 on ImageCLEF.
Table 1 shows the remarkable performance enhancement
for the low-bit MobileNet-V2. For example, the 2-bit
MobileNet-V2 on Office-31 under the LifeQuant process
in case W → D → A receives 58% to 66% accuracy im-
provements and 65% to 74% forgetting rate reduction. In
addition, the 3-bit ResNet-50 on ImageCLEF in case B →
C → I under the LifeQuant obtains a 28% to 50% accuracy
gain and 38% to 66% forgetting rate reduction. The results
validates LifeQuant can effectively alleviate the forgetting
problem by regularizing on space shift (see Sec. 5.2) and
rebalancing the influence of replay data in new task learning
(see Sec. 5.4).

C. Ablation study on the bounds of regularized
space under ProxQ

In Sec. 5.1, we pre-define a standard space in [−α, α] to
regularize the search space during quantization (see ProxQ

in Sec. 5.2). To validate the effectiveness of space regulariza-
tion, we compare the performances under separate settings of
α in Table 2. The results manifest that the space is required
to be larger for CIFAR-100 since there are 100 categories,
more than Office-31 with 31 categories and ImageCLEF
with 12 classes. In other words, the search space is related
to the diversity of data. Moreover, when the space is either
strongly regularized to a small range, e.g., α = 0.25, or with-
out regularized (w/o space reg.), the accuracy degrades, and
the forgetting rate rises particularly significantly with quan-
tization to lower bits. Therefore, Table 2 demonstrates the
effectiveness of space regularization by ProxQ (see Sec. 5.2).

D. Complementary study on the effectiveness
of existing LL approaches compared with Life-
Quant in multi-task quantization process

Sec. 6.2 and Sec. 7.2 in the main paper have shown the
efficacy of LifeQuant, compared with the state-of-the-art
quantization processes, in reducing the increasing quanti-
zation errors generated with the change in data tasks and
alleviating the forgetting problem. In this section, we further
evaluate recent lifelong learning (LL) approaches under the
quantization scheme adopted by LifeQuant (see Eq. (2) in
the main paper). Tables 3 and 4 present the performances
of LL compared with LifeQuant under the replay ratio of
20%, i.e., 20% old task data are employed as replay data
for retraining. The results demonstrate limited performance
improvements in developed LL approaches, since the in-
fluence of limited replay data in the new task learning is
underestimated, i.e., the imbalance issue (studied in Sec. 5.3
in the main paper). In contrast, LifeQuant obtains superior
performance improvements in forgetting rate reduction over
the prior LL works, which validates the rebalancing of the
influence of limited replay data (see Sec. 5.4 in the main pa-
per) in the alleviation of the forgetting problem. In addition,
the effectiveness of the rebalancing strategy under different
replay ratios is evaluated in Sec. 7.4 in the main paper.
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Table 1: Quantization results of MobileNet-V2 on Office-31 and ResNet-50 on ImageCLEF. γ represents the ratio of class data
changes when the task switches. Both model weights and activations are quantized to low bits. The symbol * indicates failed
prediction. The improvements over 5% (10%) are presented in blue (red).

Metrics Methods
MobileNet-V2 on Office-31 ResNet-50 on ImageCLEF

A → D → W W → D → A I → P → C B → C → I

3 bit 2 bit 4 bit 3 bit 4 bit 3 bit 4 bit 2 bit

Accuracy (%)

LSQ [15] * * * * 33.34 * 33.34 *
LLSQ [23] 38.62 23.82 9.71 8.24 50.28 48.33 46.39 46.11
Qimera [17] * * * * * * * *
IntraQ [29] 26.54 13.79 2.58 2.58 66.39 36.67 67.50 35.83
AlignQ [24] 44.73 30.45 11.95 10.36 75.00 62.78 70.56 24.17

LifeQuant (Ours) 86.36 47.10 76.96 70.71 81.11 80.27 77.00 74.66

Forgetting (%)

LSQ [15] * * * * 36.69 * 59.39 *
LLSQ [23] 58.95 60.19 87.46 90.17 28.16 28.44 43.37 39.16
Qimera [17] * * * * * * * *
IntraQ [29] 71.91 77.27 97.20 97.03 15.14 33.94 18.98 53.57
AlignQ [24] 51.90 48.22 87.02 88.32 9.77 21.10 13.67 67.73

LifeQuant (Ours) 8.00 21.48 12.45 21.33 5.50 6.88 5.36 1.48

Table 2: Effectiveness of ProxQ under the regularization on quantization search space in [−α, α] (introduced in Sec. 5.2). The
symbol * indicates failed prediction. The case with the best performance is presented in bold text. The case with the most
significant performance degradation is presented with the upper script †. The method w/o space reg. indicates quantization
without the proximal regularization (see Sec. 5.2).

Metrics Methods

ResNet-20 MobileNet-V2 ResNet-50
on CIAFAR-100 on Office-31 on ImageCLEF

(γ = 25) (W → D → A) (B → C → I)

4 bit 2 bit 4 bit 3 bit 4 bit 3 bit

Accuracy (%)

α = 0.25 47.91 21.47† 74.04† 39.72 78.33 75.00
α = 0.50 49.66 41.44 76.23 64.23 78.61 76.39
α = 1.00 50.15 45.81 76.96 70.71 78.33 76.11
α = 1.50 50.16 46.38 76.23 69.95 77.00 74.89

w/o space reg. 46.39† 30.49 74.21 36.20† 67.22† *†

Forgetting (%)

α = 0.25 25.77 62.95† 15.66 54.67 3.93 4.78
α = 0.50 23.11 28.79 14.68 28.19 3.29 2.90
α = 1.00 22.38 21.34 12.45 21.33 3.74 3.46
α = 1.50 22.37 20.41 13.95 22.17 5.36 5.05

w/o space reg. 28.18† 47.52 16.17† 58.10† 18.07† *†



Table 3: Quantization performance of LL on CIFAR-100 and Office-31. γ represents the ratio of class data changes when the
task switches. Both model weights and activations are quantized to low bits. The symbol * indicates failed prediction. The
improvements over 5% (10%) are presented in blue (red).

Metrics Methods
ResNet-20 on CIFAR-100 ResNet-50 on Office-31 MobileNet-V2 on Office-31

γ = 25 γ = 50 A → D → W W → D → A A → D → W W → D → A

4 bit 2 bit 4 bit 2 bit 4 bit 2 bit 4 bit 2 bit 3 bit 2 bit 4 bit 3 bit

Accuracy (%)

EWC [31] 46.05 * 23.56 16.76 * * * * 33.98 9.41 12.22 14.29
SI [32] 45.60 33.75 28.36 19.81 41.77 29.30 17.61 9.56 32.67 10.90 12.94 11.83

MAS [33] 42.09 29.03 31.47 13.26 40.17 32.17 18.32 5.98 33.64 11.63 12.09 12.67
RWalk [34] 44.88 34.13 24.50 19.10 40.56 28.81 18.60 8.14 33.30 9.39 12.69 11.84
SCP [37] 45.01 28.23 16.73 8.08 36.50 34.18 16.51 8.78 30.44 10.77 9.93 13.13
PFR [38] 45.31 34.02 31.38 19.75 40.06 30.95 25.47 8.27 35.30 9.81 14.50 12.17

LifeQuant (Ours) 50.15 46.21 36.94 34.32 48.54 46.54 25.65 17.23 86.36 47.10 76.96 70.71

Forgetting (%)

EWC [31] 28.71 * 63.39 70.84 * * * * 64.13 84.22 86.41 83.27
SI [32] 28.76 25.60 56.23 64.83 47.73 64.41 72.34 79.30 65.50 81.93 85.42 85.92

MAS [33] 34.96 26.01 49.31 76.82 49.51 60.32 71.93 87.39 64.59 80.64 86.45 84.97
RWalk [34] 29.89 24.94 73.11 66.08 49.65 65.03 70.41 83.06 64.94 84.49 85.60 85.95
SCP [37] 31.26 23.92 49.52 87.52 57.20 55.64 78.37 84.43 67.24 81.61 85.98 84.95
PFR [38] 29.21 24.95 49.52 64.99 50.28 61.89 60.65 81.58 62.86 83.60 83.70 85.36

LifeQuant (Ours) 22.38 16.08 42.99 41.63 38.96 42.59 58.63 63.90 8.00 21.48 12.45 21.33

Table 4: Quantization performance of LL on ImageCLEF. Both model weights and activations are quantized to low bits. The
symbol * indicates failed prediction. The improvements over 5% (10%) are presented in blue (red).

Metrics Methods
ResNet-50 on ImageCLEF MobileNet-V2 on ImageCLEF

I → P → C B → C → I I → P → C B → C → I

4 bit 3 bit 4 bit 2 bit 4 bit 3 bit 4 bit 3 bit

Accuracy (%)

EWC [31] 68.33 43.89 68.33 45.56 73.05 51.67 69.44 47.50
SI [32] 68.89 44.17 66.11 41.67 72.50 50.00 66.39 48.33

MAS [33] 66.11 45.28 65.55 43.61 73.88 48.06 72.78 42.78
RWalk [34] 67.78 44.44 66.94 42.50 73.05 48.89 71.95 43.06
SCP [37] 69.17 43.89 64.17 36.94 74.72 43.61 70.55 40.56
PFR [38] 65.56 44.17 66.67 36.95 72.22 48.05 69.72 46.95

LifeQuant (Ours) 81.11 80.27 77.00 74.66 77.50 76.38 76.39 76.11

Forgetting (%)

EWC [31] 18.73 49.71 16.55 41.01 15.20 40.38 11.74 39.08
SI [32] 20.95 48.77 19.66 45.92 14.22 42.29 14.67 37.23

MAS [33] 24.06 47.56 20.53 42.88 15.20 44.46 7.24 45.21
RWalk [34] 22.01 48.73 18.54 45.00 13.73 43.61 8.28 44.34
SCP [37] 20.35 49.57 21.87 51.46 14.22 49.67 10.14 48.15
PFR [38] 24.35 49.41 19.55 51.89 15.69 44.54 10.40 39.37

LifeQuant (Ours) 5.50 6.88 5.36 1.48 10.46 7.71 2.30 1.63


