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Table 1: Performance on the 3DMatch and 3DLoMatch
benchmarks for various depths of the MRA decoder.

Depth
3DMatch 3DLoMatch

RR(%) RRE(◦) RTE(m) RR(%) RRE(◦) RTE(m)

1 95.1 1.324 0.043 75.4 2.488 0.072
2 94.6 1.385 0.042 72.8 2.560 0.072
3 94.5 1.390 0.045 71.9 2.471 0.068
4 94.4 1.417 0.045 73.3 2.546 0.073
5 94.5 1.391 0.044 72.9 2.510 0.070
6 94.2 1.432 0.045 72.8 2.473 0.073

A. Additional Ablation Studies

The MRA decoder is only used to perform the point
cloud reconstruction task during training. Hence, the MRA
decoder architecture can be designed in a flexible manner
that is independent of the encoder design. In this section,
we experiment with various decoder architectures.

Table 1 presents variations in the decoder depth, mea-
sured by the number of transformer blocks, while setting the
dimensions to 256. In contrast to the findings of MAE [7],
we observe that the 1-layer MRA decoder exhibits supe-
rior performance over deeper decoders in terms of regis-
tration accuracy. We hypothesize that a shallow decoder
can more efficiently guide the contextual features in the
backbone to capture overall structures, which is crucial for
point cloud registration. Additionally, the similarity be-
tween point cloud registration and point cloud reconstruc-
tion tasks renders it unnecessary to increase the depth of the
decoder to bridge the gap between the tasks.

Furthermore, the effects of varying the decoder width in
a 1-layer MRA decoder are investigated in Table 2. The de-
coder width is measured by the number of channels, and the
default setting of 256 dimensions achieves promising per-
formance on both 3DMatch and 3DLoMatch benchmarks.

In conclusion, our approach employs a 1-layer MRA
decoder with a width of 256 dimensions, which not only
achieves outstanding performance in accuracy but also re-
quires modest training resource.

Table 2: Performance on the 3DMatch and 3DLoMatch
benchmarks for various dimensions of the MRA decoder.

Dim
3DMatch 3DLoMatch

RR(%) RRE(◦) RTE(m) RR(%) RRE(◦) RTE(m)

128 94.5 1.353 0.043 73.1 2.447 0.073
256 95.1 1.324 0.043 75.4 2.488 0.072
384 94.6 1.373 0.044 74.1 2.552 0.072
512 94.9 1.435 0.045 74.8 2.533 0.071
768 94.6 1.410 0.045 73.0 2.549 0.074
1024 94.5 1.423 0.045 72.8 2.689 0.081

B. Efficiency Evaluation
The inference time of comparison methods is presented

on the 3DMatch [17] benchmark. The experiments are con-
ducted on a desktop computer with an Intel I7-10700 CPU
and an Nvidia RTX 3090 GPU. The comparison methods
include 3DSN [6], FCGF [5], CG-SAC [13], D3Feat [1],
DGR [4], PCAM [2], OMNet [14], DHVR [9], Predator [8],
CoFiNet [16], RegTR [15], Lepard [10], SC2PCR [3], and
GeoTransformer (GeoTR) [12]. As shown in Table 3, our
MRT achieves a promising inference time of under 110 ms,
which is feasible for many real-time applications. While
OMNet may exhibit higher efficiency, it suffers from inac-
curate point cloud alignments. Similarly, RegTR underper-
forms in terms of accuracy and robustness. In comparison
to GeoTR, our approach also demonstrates superior perfor-
mance in both efficiency and accuracy. In general, the MRA
network effectively guides the backbone network, resulting
in a significant improvement in registration accuracy with-
out incurring additional computational complexity during
the inference process. This enables our method to achieve
promising performance in both accuracy and efficiency.

C. Reconstruction results
The reconstruction results obtained on the 3DMatch,

ModelNet, and KITTI datasets are shown in Fig. 1, Fig.
2, and Fig. 3, respectively, demonstrating the effective re-
covery of invisible parts by our method. Specifically, our
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Table 3: Computational time in seconds on the 3DMatch benchmark.

3DSN FCGF CG-SAC D3Feat DGR PCAM OMNet DHVR Predator CoFiNet RegTR Lepard SC2PCR GeoTR Ours

30.234 1.562 0.263 0.916 1.741 1.786 0.012 3.43 1.572 1.134 0.103 0.522 0.380 1.523 0.106

Input

GT

Pred

Figure 1: Reconstruction results obtained on the 3DMatch dataset.

Input

GT

Pred

Figure 2: Reconstruction results obtained on the ModelNet dataset.

method effectively recovers the overall structures of the
point cloud pair while accurately predicting the fine-grained
geometric details of the invisible regions inferred from the
corresponding regions in the other point cloud. These re-
sults verify that the reconstruction auxiliary task conducted
by the MRA guides the contextual features in the backbone
to capture the overall structures and the geometric details of
point cloud pairs, thus boosting the registration accuracy of
our method. However, some point cloud pairs are still inad-

equately reconstructed in terms of geometric details, as ob-
served in the first example in Fig. 1. We postulate that this is
mainly due to the lack of critical local features, such as pla-
nar regions, in the inadequately reconstructed areas. As the
reconstruction auxiliary task is optimized jointly with the
point cloud registration task, the backbone network tends to
capture geometric structures with critical local features to
improve the accuracy of point cloud registration.
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Input
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Figure 3: Reconstruction results obtained on the KITTI dataset.

D. Loss Functions

Our method is additionally trained with three other loss
functions: an overlap loss Lo, a correspondence loss Lc,
and a feature loss Lf . By introducing coefficients λc and
λf , the final loss function is constructed and formulated as

L = Lo + λcLc + λfLf . (1)

Overlap loss. Lo measures the consistency between the
ground-truth overlap labels oX̃ , oỸ and the predicted over-
lap scores ôX̃ , ôỸ . Lo=LX

o +LY
o , and LX

o is defined as

LX
o =

−1

M ′

M
′∑

i=1

[oX̃i×logôX̃i+(1−oX̃i))×log(1−ôX̃i)]. (2)

The overlap labels oX̃ , oỸ are obtained by downsam-
pling the overlap labels oX , oY of point clouds X, Y ,
where oX , oY are computed by setting a threshold ro for
the closest point distances between the aligned point clouds.

Correspondence loss. Lc measures the correctness of
the predicted corresponding point clouds in the overlapping
regions based on the ℓ1 loss. Lc = LX

c + LY
c , with the

correspondence loss LX
c defined as

LX
c =

1∑M
′

i=1 o
X̃i

M
′∑

i=1

oX̃i

∣∣∣T Y
X

(
X̃i

)
− Ŷi

∣∣∣ , (3)

where T Y
X is the ground-truth transformation from X to Y .

Feature loss. Lf measures the discriminative power
of the extracted features based on the InfoNCE loss [11].
Lf = LX

f + LY
f , with LX

f defined as

LX
f = −Ex∈X

[
log

f (x, px)

f (x, px) +
∑

nx
f (x, nx)

]
,

f(x, c) = exp(FxTWfFc),

(4)

where X denotes the set of points X ⊆ X̃ with a correspon-
dence in Ỹ ; Fx indicates the extracted features for point x.
px and nx denote the positive and negative points in Ỹ ,
which are selected based on the positive and negative mar-
gins (rp, rn); and Wf is a learnable linear transformation.

E. Additional Implementation Details

Our MRT employs a 6-layer transformer encoder and
a 1-layer MRA decoder, with 8 heads in the transform-
ers. The dimensions of both the transformer encoder and
MRA decoder are set to 256. Regarding the 3DMatch
dataset, each point cloud is first downsampled into 32 center
points and then divided into point patches, where each point
patch contains 32 points. The values of (rp, rn) are set to
(0.2, 0.4). During training, MRT uses a batch size of 1 over
70 epochs, and the multi-step LR policy reduces the learn-
ing rate by 0.5 at epochs [20, 40, 60]. For the ModelNet40
dataset, each point cloud is downsampled into 32 center
points, and each point patch contains 16 points. The values
of (rp, rn) are set to (0.12, 0.24). During training, MRT
uses a batch size of 4 over 400 epochs, and the learning rate
is halved every 100 epochs. Regarding the KITTI dataset,
each point cloud is downsampled into 32 center points and
divided into point patches, where each point patch contains
16 points. The values of (rp, rn) are set to (4.8, 9.6). Dur-
ing training, MRT uses a batch size of 1 over 200 epochs,
and the learning rate is halved every 50 epochs.

F. Notations

To further improve the reading experience, the notations
utilized in the article are shown in Table 4.

3
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Table 4: Notations utilized throughout the article.

Symbol Description Symbol Description
R The ground truth rotation matrix R ∈ SO(3) t The ground truth translation vector t ∈ R3

R̂ The predicted rotation matrix R̂ ∈ SO(3) t̂ The predicted translation vector t̂ ∈ R3

X Source point cloud X = {x1, x2, ..., xM} ⊆ R3 Y Target point cloud Y = {y1, y2, ..., yN} ⊆ R3

X̃ The downsampled source point cloud X̃ ∈ RM
′
×3 Ỹ The downsampled target point cloud Ỹ ∈ RN

′
×3

F X̃ The encoded features F X̃ ∈ RM
′
×D of X̃ by KPConv F Ỹ The encoded features F Ỹ ∈ RN

′
×D of Ỹ by KPConv

X̃c The center points of X̃ Ỹc The center points of Ỹ
X̃p The point patches in the X̃ Ỹp The point patches in the Ỹ
T X̃
m The mask tokens of X̃ T Ỹ

m The mask tokens of Ỹ
T X̃
f The full set of tokens of X̃ T Ỹ

f The full set of tokens of Ỹ
ψX

Y The ground truth transformations from Y to X ψY
X The ground truth transformations from X to Y

P X̃
m The positional encoding of mask tokens used for X̃ P Ỹ

m The positional encoding of mask tokens used for Ỹ
T X̃ The full set of tokens of X̃ with positional encoding T Ỹ The full set of tokens of Ỹ with positional encoding
Ŷp The point patches in the aligned Ỹ predicted by X̃ X̂p The point patches in the aligned X̃ predicted by Ỹ
Ŷ The corresponding point cloud predicted by X̃ X̂ The corresponding point cloud predicted by Ỹ
ô The predicted overlap scores o The ground truth overlap scores
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