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In this supplementary material, we provide a detailed de-
scription of the proposed algorithm (Sec 1), a conceptual
comparison with previous method (Sec 2) and additional
experimental results and analysis (Sec 3).

1. Algorithm

To thoroughly describe the procedure of unsupervised
domain-adaptive 3D object detection by the proposed
REDB, we present the Algorithm 1. In the stage one, we
pretrain the 3D detector F'(-) on the source domain with the
randomly scaled objects [6] {(X?, fros(Y;*))} s, If the
current epoch is initial e = 1 or in the list L = [31 61 ,91],
which specifies the epochs requiring pseudo-labelling, we
enter stage 2 to generate reliable, diverse and balanced
REDB pseudo labels. We first inference the target domain
{X!}1¢, and obtain the pseudo label {Y;}¥*, for each tar-
get pomt cloud. Then, if the current epoch e = 1, which
means the 3D detector has no knowledge about the tar-
get domain, the pseudo label might be unreliable thus we
need examination. We feed the pseudo label paired with the
corresponding pomt clouds {(X7, Yf)}j\ﬁ and the source
pairs {(X?,Y;*)} Y+, into the proposed Cross-domain Con-
sistency Examination (CDE) module that filters out the un-
reliable pseudo labels via Equation (2), (3). Once the relia-
bility of pseudo labels is guaranteed, we target at obtaining a
more geometrically diverse subset of pseudo-labeled boxes

{b }B/  to close the object gap from different geometri-
cal aspects, using OBC-based downsampling via Equation
(4), (5). Next, to alleviate the class imbalance, we sample

class-balanced reliable and diverse pseudo labels {b }B/ d

and randomly scaled source labels fros({b;}7.,) to each

point cloud { X?, ¥}V, via Equation (6), (7). At the end of
stage 2, we have a subset of REDB pseudo labels. We train
this subset in stage 3 for several epochs until the current
epoch appears in the pseudo-labelling epoch list L. The al-
gorithm is then alternating between stage 2 and stage 3 until
running out of all epochs.

2. Conceptual Comparison

This section establishes a connection between the pro-
posed REDB and previous domain-adaptive 3D detection
approaches, with emphasis on real-world applicability and
aspects to address domain shifts, as summarized in Tab 1.
Statistical Normalization (SN) [4]: A data modification
approach that modifies the object size of the source do-
main to match the target statistics, in order to address scale-
induced object shift. Nonetheless, this method demands the
access to object statistics of the target domain, rendering it
unfeasible in practical scenarios where domain knowledge
is not available.

MLC-NET [2]: A teacher-student paradigm, in which the
teacher parameters are aggregated by an exponential mov-
ing average (EMA) of the student model and updated iter-
atively. The teacher is in charge of producing pseudo la-
bels that supervise the learning of the student model. The
technique leverages the historical weights to predict smooth
pseudo labels for self-training on the target domain. How-
ever, this method suffers from four drawbacks: (1) it over-
looks the environmental gap, leading to erroneous pseudo-
labeling during the initial pseudo-label generation stage.
However, our proposed cross-domain examination (CDE)
offers a simple solution to this problem. (2) The employ-
ment of two models (student and teacher) simultaneously
doubles the training time and GPU memory consumption.
Additionally, the point-wise consistency loss that super-
vised the learning of student model yields more gradient
back-propagation, which further increases the training time.
(3) Despite being compatible with point-based 3D detec-
tors, this method cannot be applied to mainstream grid-
based detectors. (4) This approach only tailors the model
training and inference for a single class, which is not a vi-
able strategy in real-world situations.

LIDAR DISTIL [5]: A teacher-student framework that
seeks to enhance the generalizability of 3D detectors to the
domain with different beam numbers. In particular, the
teacher and student networks are trained using high-beam



Algorithm 1 The algorithm of ReDB for domain-adaptive 3D object detection

Input:

{(X?,Y?)}X:, - source point clouds with human annotations, where all labelled boxes: {b; F = {bjlb; € YN,

{ X!}, - target point clouds without human annotations
F(+) - the 3D object detector
fros(+) - the random object scaling funcion
FE - total number of training epochs
L - alist of epochs requiring pseudo labelling
Output:
F(-) the 3D detector adapted to the target domain

/* Stage 1: Pretrain on the Source Domain */
Ns
F() < {(X7, fros(Yi) }i
forec[1,--- ,E]do
ife=1or e € L then

/* Stage 2: Generate Pseudo Labels on the Target Domain */

(VY PXYY)
if e = 1 then
oy,

end if

{0} Ly = {bylb; € I}
{b;}2/4  Diversity({b;}2.,)
{(X5 VY

3

end if
/* Stage 3: Self- llam on the Target Domain */
F(-) « {(X% YOI

end for

> Cross-domain Consistency Examination via Equation (2), (3)

 Reliability ({(X/, V) } ¥y, (X7, Y)Y

> OBC-based Downsampling via Equation (4), (5)

¢ Balance({(X}, V)1V, {b; }] . fros({b;} 1))

> Class-balanced Sampling via Equation (6), (7), (8)

Table 1: Comparison of prior Domain Adaptive 3D Detection methods in two aspects: applicability and addressed domain
shifts. The main difference is that the existing methods has constrained applicability, and address incomprehensive

domain shifts.

‘ Applicability

Addressed Domain Shift

METHOD ‘ Multi-class  Compatible UDA  Space Complexity Object Shift Environmental Shift
SN [4] (%4 v b ¢ (4 Scale b ¢
LIDAR DISTIL [5] X Grid-based b 4 Multiple models X Beam number
MLC-NET [2] b 4 Point-based (%4 Dual models Scale b 4
ST3D [7] b 4 v (4 Memory bank Scale b 4
ST3D++ [6] b 4 v v Memory bank Scale b 4
Diversity geometrics All aspects
REDB v v v v (scale, density, distance, etc)  (beam number, angle, etc)

and low-beam data, respectively. The student network is
subsequently trained to align the regions of interest on the
bird eye vew (BEV) feature maps with those of the teacher
model. The primary objective of this approach is to mit-
igate the environmental gap that stems from inconsistent
beam numbers. However, this method encounters similar
shortcomings as MLC-NET or SN, including the prereq-
uisite knowledge about the target domain (i.e., beam num-

ber), the employment of multiple teacher networks leading
to considerable computation time and GPU memory con-
sumption, restricted applicability to point-based 3D detec-
tors, and unfair single-class adaptation. Additionally, this
study fails to account for shifts in objects and other envi-
ronmental factors, such as disparities in beam angle, range,
and data collection locations and time.

ST3D [6] / ST3D++ [7]: A self-training strategy that em-



S™ SS9 S2  mAPgev / mAPsp

0 10 0 56.73 /45.21
10 2 60.27 / 49.25

10 20 2 60.22 / 48.73
10 2 61.14 / 50.10

Table 2: Sensitivity analysis for S”, S9 and S2.

ploys random object scaling (ROS) to pre-train the source
data and a memory bank to store and update all pseudo la-
bels for self-training the target data. The objective of ROS
is to alleviate object shift by allowing the pre-trained detec-
tor to recognize objects with a wide range of scales. The
memory bank combines historical and current pseudo la-
bels to generate more consistent pseudo labels. ST3D++
is an extended version that incorporates a domain-specific
batch normalization [!] with the aim of disentangling the
statistic estimation (i.e., mean and variance) in different do-
mains within batch normalization layers. The benefit of this
series of work (i.e., ST3D and ST3D++) over prior works
is that, they do not necessitate any prior knowledge of the
target domain and are not constrained by detector types. De-
spite some progress, significant challenges persist in several
aspects, including neglecting environmental shifts, unfair
single-class adaptation, and excessive storage requirements
for retaining historical pseudo labels.

REDB: Tab 1 highlights the advantages offered by the pro-
posed REDB, concerning the approach applicability and
handled domain shifts. The proposed REDB (1) facilitates
multi-class adaptation via the proposed class-balanced self-
training, (2) is compatible with all types of point cloud en-
coders used in modern 3D detectors, (3) employs an unsu-
pervised domain adaptation (UDA) approach, which elimi-
nates the need for any prior knowledge about the target do-
main, (4) does not incur extra costs for GPU memory and
disk storage, (5) lastly, provides a solution to comprehen-
sively identify and address both object shifts and environ-
mental shifts.

3. Additional Experiments
3.1. Implementation Details

Hyperparameter settings. For self-training on the tar-
get domain, we set the total training epochs E as 120
and pseudo label generations list L as [31,61,91]. Thus,
we generate the pseudo labels at the initial epoch of
self-training, then update pseudo labels every 30 training
epochs. We provide complete configuration files for all
experiments in our code repository, attached with the
supplementary material.

Fair Model Selection. The prior approaches evaluate the
checkpoints based on the performance of the target domain,
which is not fair and impractical, because the target la-

Method nuScenes — KITTI  Waymo — nuScenes
ST3D 25h 24m 48s 27h 13m 42s
ST3D++ 22h 22m 28s 24h 57m 23s
REDB 20h 21m 1s 29h 53m 16s

Table 3: Self-training Time Comparison.

bels not observable under the unsupervised domain adapta-
tion (UDA) setting. Hence, We again revisit model selec-
tion in a fair manner without accessing any target labels.
For selecting the pre-trained models, we simply opt for the
one with the lowest source risk. Regarding the self-trained
checkpoints, we observe that the modern 3D detectors op-
timized with Adam Onecycle [3] are typically reaching the
best performance at the cycle’s end. Based on this observa-
tion, we conduct multiple training cycles (each cycle con-
tains 30 epochs) with the Adam Onecycle optimizer and
generate pseudo-labels at the end of each cycle. The final
selected model is the last checkpoint of the last round af-
ter several rounds of self-training. By doing so, we not only
assure the pseudo-labels are generated by optimal models at
each round, but also can simply decide the last checkpoint
as the final model without knowing the target labels.

3.2. Sensitivity Analysis of S”, 5S¢ and S~

In this section, We examine the sensitivity of our ap-
proach to different values of hyperparameters S”, S9 and
the increasing and decreasing number S2 for S™ and S9,
respectively. Tab 2 presents different combinations of S”,
S9 and S”. A comparison of the row-1 and row-2 reveals
that injecting pseudo-labeled REDB objects progressively,
can yield a notable performance boost, which are 6.24% and
8.94% in mAPggyv and mAP;p, respectively. When compar-
ing row-2, row-3 and row-4, we find that either sampling
a large or small number of objects leads to similar perfor-
mance, fluctuating at 0.87% mAPggy and 1.37 mAPsp, re-
spectively. As a result, to secure an appropriate time com-
plexity, we commonly select the values in row-4 for S, S9
and S2.

3.3. Statistical Analysis on OBC scores

In this section, we plot the statistical correlation of the
proposed overlapped box counting (OBC) with different ge-
ometrical features in Fig 1. The first plot shows that there
is a clear relationship between OBC and box scales, result-
ing in a Pearson correlation coefficient (PCC) of 0.64. The
second and third plots suggest that point density and object-
to-sensor distance have a minor correlation with the OBC
score, with PPC 0.21 and 0.33, respectively. Such minor
correlations are discovered because the diversity of an ob-
ject is not solely determined by a single factor (e.g., object
density, distance), but an unmeasurable combination of dif-
ferent geometrical features. To address multi-factor object
shifts in 3D scenes, a universal metric is required. Instead
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Figure 1: Statistical analysis on overlapped boxes counting (OBC). Each red point indicates a pseudo-labeled box associated
with its OBC value and 1-dimensional geometrical feature (e.g., volume, point density and distance). The green line is the
regression line, and the translucent band indicates the size of the confidence interval for the regression estimate. We calculate
the Pearson correlation coefficient (PCC) to show the correlation between OBC value and different geometrical features.

of manually designing a linear combination of different fac-
tors, the proposed OBC score focuses on reflecting the over-
all diversity for each 3D object.

3.4. Time Analysis on Self-training

To demonstrate that the effectiveness of the proposed
REDB does not benefit from additional extensive compu-
tation, we report the runtime of the entire self-training pro-
cess, including pseudo label generation, in Tab 3. Note
that for all compared approaches, we use two Tesla V100-
PCIE-16GB GPUs for the nuScenes — KITTI task and one
NVIDIA RTX A6000 GPU for the Waymo — nuScenes
task. The backbone 3D detector is SECOND for all ap-
proaches. The time comparison results show that our
method takes a similar amount of time as the two existing
baseline methods. Specifically, on the task of nuScenes —
KITTI, we are approximately 2 to 4 hours faster, while 3
to 5 hours slower for the Waymo — nuScenes task. This
is due to the fact that each single frame of point cloud in
Waymo is much larger than that in nuScenes, thus CDE
takes longer to infer the pseudo labels pasted to the Waymo
point cloud. However, both existing methods rely on the
memory bank technique, which is not only time-consuming
but also memory-hungry.
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