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A. Detailed Information of Rendering and

Gradient Calculation

A.1. Rendering

This section details how we cast rays towards SDF ob-

jects that have been inserted into a point cloud scene. As

noted in the main paper, the first step is to determine the ob-

ject’s bounding box center and draw a sphere with a 7-meter

radius centered at that point. When generating adversarial

poses, we restrict displacement to less than 4 meters on the

xy-plane to ensure that no portion of the object extends be-

yond this 7-meter sphere.

A LiDAR point x̂i in the input scene is evaluated for

potential adjustment (due to now being occluded by the in-

serted object) only if a straight line (the laser beam) con-

necting it to the LiDAR source intersects with the 7-meter

sphere centered at the object insertion location. We re-

fer to these points as {x̂i|i ∈ Icalc}. Any LiDAR points

that do not meet these criteria are assumed to remain un-

occluded after the object insertion, and are thus kept un-

changed (xi ← x̂i). Figure 8 illustrates this process.

To process the LiDAR points in {x̂i|i ∈ Icalc}, we

sample J + 1 points on all beams. To calculate the step

size for the ith beam, we first compute its beam length

ki = ∥x̂i − s∥2. Then, the step size for this beam is set to

be ki/J . Using this step size, we sample points x̂
(j)
i along

the beam between the point, x̂i, and the LiDAR source,

s, where j = 0, 1, . . . , J , and endpoints x̂
(0)
i = s and

x̂
(J)
i = x̂i. The value J is chosen to make sure that none of

the beams have a step size greater than 0.1 meters.

Next, we evaluate the signed distance function

g(z, T (x̂
(j)
i ;θ)) for all the sampled points. If for all j,

g(z, T (x̂
(j)
i ;θ)) > 0, then x̂i is not occluded and we set

xi ← x̂i and mi ← 0.

Otherwise, x̂i is occluded and needs to be replaced

by a xi on the surface of the inserted SDF object, and

mi ← 1. To this end, we find the first j such that

g(z, T (x̂
(j)
i ;θ)) < 0, which is denoted as jin. Note that

since we place the object at least 15m away from the AV,

we know that jin > 0 always holds. Finally, we run a binary

search of 30 steps between x̂
(jin)
i and x̂

(jin−1)
i to find the xi

such that |g(z, T (xi;θ))| < ϵ = 10−6. xi is on the surface

of the SDF object and added to the output scene, while the

original x̂i is occluded and removed from the output scene.

A.2. Pose Transformation

To describe the pose transformations T (·;θ), we use

a 6-dimensional vector θ consisting of the coordinates

(xθ, yθ, zθ) and the angles of yaw (δθ), pitch (βθ), and roll

(γθ). The transformation matrix is given as

T (x;θ) = R(δθ)R(βθ)R(γθ)
[

x− (xθ, yθ, zθ)
T
]

, (9)

where R(δθ,), R(βθ), and R(γθ) are 3× 3 3D rotation ma-

trices of yaw, pitch, and roll.

A.3. Gradient Calculation Using Automatic Differ
entiation Tools

To compute Eq. (7) using automatic differentiation tools,

we first calculate (ei ·
dL
dxi

) and (ei ·
∂g(z,·)
∂xi

)−1 for all xi, uti-

lizing two back-propagation operations on L and g. Subse-

quently, we detach the resulting two tensors from the com-

putational graph and treat them as coefficients. Finally, we

perform another back-propagation operation with respect to

z on a weighted sum of SDF values. A similar three-step

strategy is also applied to Eq. (8).

B. Detailed Information of Experiments

B.1. Metrics of Detectors

We first train our PointPillars and SST detector mod-

els exclusively on point cloud data from the Waymo Open

Dataset training set. We did not incorporate any auxiliary

inputs such as intensity. We show the performance of our

model on the vanilla WOD detection task in Table 4 and

compare it with the baseline model in [20].

B.2. HyperParameters

In Section 4.3, we provided a summary of the hyper-

parameters utilized in our experiments. Here, we provide

additional details regarding the hyper-parameters used in

the generation of adversarial shape and pose.

We conducted a hyper-parameter search to determine

the optimal learning rate α for generating both adversar-

ial shape and adversarial pose. Specifically, we considered
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Figure 8: Rendering an SDF object with realistic occlusion by moving background points to the object’s surface. We evaluate

points only if the beam from the LiDAR source to that point intersects with a 7-meter radius sphere drawn around the inserted

object. When changing the object’s pose, we limit displacement to under 4 meters on the xy-plane so that there is no part of

the object exceeding the 7-meter sphere.

Model
Metric

(Vehicle)

Overall BEV

(LVL 1/LVL 2)

Overall 3D

(LVL 1/LVL 2 )

Baseline in [20]
APH 79.1/71.0 62.8/55.1

AP 80.1/71.9 63.3/55.6

Our PointPillars
APH 81.0/73.3 60.3/52.6

AP 82.3/74.6 61.0/53.3

Our SST
APH 89.2 /81.8 74.8/66.4

AP 90.0/ 82.5 75.3/66.8

Our PointPillars APH 81.2/73.5 60.5/52.8

after Fine-tuning AP 82.6/74.9 61.2/53.5

Table 4: Our PointPillars and SST detectors achieves com-

parable APH and AP for vehicles as the baseline model re-

ported in [20]. The fine-tuned PointPillars detector model

shown in the last row is discussed in Section 4.7.

values of α in the set {0.0001, 0.001, 0.01, 0.1}. In addi-

tion, for adversarial shape generation experiments, we also

searched for the optimal value of λ in the set {0.1, 1, 10}.

To select the optimal value of α, we employed the

threshold-recall curve’s AUC metric as the target. Our ex-

periments revealed that α = 0.01 resulted in the lowest

AUC value for both shape and pose experiments. Moreover,

for adversarial shape generation, the lowest AUC value was

obtained with α = 0.01 regardless of the value of λ.

To select the optimal value of λ, we chose the value that

produced the lowest loss value Ladv(z). In instances where

different values of λ produced similar loss values, we chose

the larger value of λ to minimize the perturbation. Our ex-

periments determined that λ = 10 was optimal for Coupe

and Sports Car, while λ = 1 was optimal for SUV, Convert-

ible Car, and Beach Wagon.

C. Additional Visualizations for Adversarial

Shape Generation

We randomly select 50 adversarial shapes generated by

SHIFT3D and present them in Figure 9. We group them by

the baseline objects used for generation. We observe that

most of the shapes generated are semantically meaningful.

We also present the adversarial objects and the cor-

responding detection scores at various steps of the opti-

mization process in Figure 10. Notably, we observe that

SHIFT3D object detection scores smoothly decrease, which

demonstrates that SHIFT3D can be used to explore chal-

lenging examples for a detection model in a continuous

space of increasing difficulty, rather than at just a singular

point.

D. Additional Qualitative Results for Adver-

sarial Pose Generation

In Figure 11 we present more visualizations for the base-

line and challenging poses produced by SHIFT3D in their

scenes. Interestingly, we observe that the detection model

tends to fail when the inserted SHIFT3D vehicle is closed

to or partially occluded by other objects in the scenes, such

as trees, bushes, fences, or other vehicles.

E. Experiments on SST detectors

In this section, we present the results of generating ad-

versarial shape and pose on an SST detector, in order to

demonstrate that SHIFT3D can be used with various net-
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Figure 9: Visualizations of random selected challenging objects generated by SHIFT3D
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Figure 10: Adversarial shapes and their corresponding detection scores at different steps of the optimization process. (a)

shows the initial shape corresponding to the baseline object, while (b)-(d) depict intermediate shapes at various stages of the

optimization. (e) shows the final adversarial shape at the end of the optimization.

work architectures. Our SST detector’s performance metri-

ces on natural WOD vehicles are shown in Table 4. We can

see that it overperforms the baseline in [20].

E.1. Adversarial Shape Generation Results

Figure 12 presents the adversarial shape generation re-

sults for an SST detector, with threshold-recall curves for

each baseline object and its corresponding adversarial ob-

jects across the 500 scenes. To quantify the overall reduc-

tion in recall, we compute the area under the threshold-

recall curves (AUC) and report the corresponding numerical

values in Table 5.

Area Under Curve (AUC)

Method Coupe
Sports

Car
SUV

Conv.

Car

Beach

Wagon

Baseline 0.812 0.817 0.743 0.726 0.830

SHIFT3D 0.533 0.524 0.471 0.448 0.585

SHIFT3D evaluated

w/ PointPillars
0.559 0.538 0.581 0.461 0.623

Table 5: The AUC for the curves in Figure 12, which

demonstrates that SHIFT3D produces challenging shapes

that confuse an SST detector and SHIFT3D shows high

transferability.

E.2. Adversarial Pose Generation Results

Our results, presented in Figure 13 and Table 6, demon-

strate a significant reduction in recall performance for ad-

versarial poses, even when placed in alternate poses.

Area Under Curve (AUC)

Method Coupe
Sports

Car
SUV

Conv.

Car

Beach

Wagon

Baseline 0.812 0.817 0.743 0.726 0.830

SHIFT3D 0.681 0.678 0.518 0.544 0.740

SHIFT3D evaluated

w/ PointPillars
0.691 0.695 0.659 0.601 0.739

Table 6: The AUC for the curves in Figure 13, which

demonstrates that SHIFT3D produces challenging poses

that confuse an SST detector and SHIFT3D has high trans-

ferability.

E.3. SHIFT3D Transferability between PointPillars
and SST

In order to investigate the transferability of SHIFT3D

between different detector models, we also test our Point-

Pillars detector on the shapes and poses generated by

SHIFT3D with the SST detector. As observed in Figures 12

and 13 and Tables 5 and 6, both shape and pose generated

by SHIFT3D show high transferability, even between two

completely different model structures.

F. Retrieving the Nearest Match for SHIFT3D

Queries in Natural Objects

To test the semantic features produced by SHIFT3D on a

set of natural objects, we examine objects within the WOD

validation set that closely resemble the output of SHIFT3D.

These experiments will show that SHIFT3D is not only use-

ful for understanding 3D object detectors, but also for data

discovery within large, possibly unlabeled datasets.



Input Scene
Baseline Object

(Shape Not Changed)

Baseline Pose

in the Scene

SHIFT3D Pose

in the Scene

Sports Car Detection Score: 0.95 Detection Score: 0.04

SUV Detection Score: 0.80 Detection Score: 0.04

Convertible Car Detection Score: 0.75 Detection Score: 0.06

Beach Wagon Detection Score: 0.78 Detection Score: 0.06

Coupe Detection Score: 0.89 Detection Score: 0.06

Coupe Detection Score: 0.86 Detection Score: 0.05

Figure 11: Additional visualizations of challenging poses and their scenes. Red boxes are detector’s output.
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Figure 12: Threshold-recall curves to evaluate adversarial shape generation for different vehicles in the ªAutomobileº cate-

gory with the SST object detector. Each curve represents the recall rate of the detector at different detection threshold values,

computed from 500 scenes with the corresponding vehicle present. SHIFT3D demonstrates its effectiveness in deceiving the

SST detector. We also evaluated the PointPillars’s performance on these objects generated with the SST detector to show the

transferability of SHIFT3D.
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Figure 13: Threshold-recall curves evaluate adversarial pose for ªAutomobileº category vehicles with the SST detector.

Similar to the curves in Figure 12, each curve shows the SST detector recall rate at different thresholds, from 500 scenes with

the vehicle present. SHIFT3D exhibits significantly lower recall rates and high transferability.

First, we focus on reconstructing the shapes of natural

vehicles from the WOD validation set from their partially

occluded LiDAR point clouds. This process begins by crop-

ping out the point cloud corresponding to each vehicle. Us-

ing DeepSDF, we then reconstruct the vehicle’s shape. The

goal is to optimize the shape latent parameters, z, so that all

points are nearly equal to 0. However, a direct optimization

of z in its native 256-dimensional space often leads to over-

fitting, resulting in shapes that are not realistic. To counter

this, we adopt a dimensionality reduction strategy, akin to

the methods in [22] and [7]. We perform a PCA on the

vehicle shapes’ z in our DeepSDF training set to create a

10-dimensional subspace ΠPCA.

Mathematically, for a set of points {xi} within a bound-

ing box, where the ground truth pose is θ, shape reconstruc-

tion is achieved by:

znatural = argmin
z∈ΠPCA

∑

i

∥g(z, T (xi;θ))∥
2. (10)

Subsequently, a retrieval pool is formulated by calculat-

ing {znatural} for 8000 natural vehicles in the WOD. For an

object generated by SHIFT3D, represented by zSHIFT3D, we

identify the natural object whose znatural is the most similar

by minimizing the ℓ2 distance:

z∗
natural = argmin

znatural

∥znatural − zSHIFT3D∥2 (11)

To guarantee the reliability of the retrieval, we exclude

instances where the computed z∗natural is significantly differ-

ent from zSHIFT3D. For clarity, in our study, only objects

with ∥znatural∗ − zSHIFT3D∥2 < ∥zSHIFT3D∥2 are considered.

For evaluation purposes, we position the retrieved ob-

jects in identical poses to the SHIFT3D objects to eliminate

the influence of pose variation. The results, depicted as a

threshold-recall curves, can be found in Figure 14. Addi-

tionally, visual comparisons between SHIFT3D objects and

their natural counterparts are showcased in Figure 15.

We note that some of the retrieved objects (e.g. in the lat-

ter columns) do look visually similar to our SHIFT3D ob-

ject, but some (e.g. the former columns) look quite visually

different. We attribute this discrepancy to the limited nature

of the retrieval dataset; SHIFT3D will often generate exam-

ples that are not close to any example in the retrieval dataset,

either because the retrieval dataset is small or not diverse

enough, or because the SHIFT3D object falls outside the

real data distribution. However, generating OOD samples

is very much one of the clear advantages of SHIFT3D, as

we can use these objects that are rare or impossible to find

in the real world to learn lessons about our models’ failure

modes that would be hidden from us otherwise. More cru-

cially, the retrieved objects always produce lower detection

scores from our detector than the baseline objects. In other

words, despite some discrepancies in visual similarity, us-



ing SHIFT3D to retrieve real objects seems to consistently

provide us with interesting examples that tend to fool our

detector. And this application of SHIFT3D is agnostic to

these objects being labeled, so it can be applied to large,

unlabeled datasets.
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Figure 14: Threshold-recall curves to evaluate the retrieved nearest matches of adversarial shape generation for different

vehicles in the ªAutomobileº category. We only plot objects such that ∥znatural∗ − zSHIFT3D∥2 < ∥zSHIFT3D∥2
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Baseline

Objects

Score: 0.91 Score: 0.41 Score: 0.62 Score: 0.50 Score: 0.60

SHIFT3D

Objects

Score: 0.04 Score: 0.0 Score: 0.14 Score: 0.10 Score: 0.11

Retrieved

Natural Objects

Score: 0.82 Score: 0.07 Score: 0.23 Score: 0.40 Score: 0.33

Figure 15: Visualizations of the retrieved nearest matches of SHIFT3D objects.


