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1. Details of Implementations

The meta-model is a 12-layer decoder-only transformer, and the multi-source feature fuser comprises a single cross-
attention layer. For data representation, METER [5], ViT [4], and RoBERTa [9] are considered as the vision-language, vision,
and language knowledge sources. For ViT and RoBERTa, we use the pre-trained models from Huggingface library [ 8] with
base configuration. During pre-training, we use 8 demonstrations, which can be easily expanded due to the low computation
cost of the approach. For DID prompts, we leverage Faiss [7] to retrieve 100 related data based on VL representations, which
are then randomly sampled for demonstrations. For LID prompts, we sample 1 class in addition to the query class. The model
is pre-trained for 500k steps with 4k warm-up steps using AdamW [10] optimizer. Pre-training performance is monitored
using LID and OD prompts from a separate validation set, and the best checkpoint is determined based on the summation
of LID and OD validation performance. To avoid label leakage in demonstrations for downstream tasks, DID prompts are
utilized as a selection method for ICL evaluation in downstream, as opposed to LID prompts. It should be noted that gradient-
based methods are practically infeasible to benefit from the demonstration selection approach due to the high-cost re-training
process.

1.1. Construction of Self-Supervised Datasets

We utilize spaCy library' to parse the texts from image-text datasets, including COCO [3], Visual Genome [], Conceptual
Captions [14], and SBU Captions [ 1]. We extract the tokens with part of speech belonging to nouns, verbs, adjectives, and
adverbs. To construct a pre-training label space that facilitates the transfer to the downstream tasks, we select tokens that
occur to be the labels in downstream, i.e., VQAv2, SNLI-VE, and NLVR2, and randomly sample additional 1000 tokens. As
a result, our pre-training label set consists of 3126 classes, which can be readily extended to accommodate other tasks. We
then retrieve image-text pairs that contain the identified classes in the text and replace the corresponding spans with special
[MASK] tokens. This results in a manageable collection of 4,110,168 instances in our environment, with the possibility of
further expansion.

1.2. Experiments on Learning Efficiency

We reimplement the architecture of both SINC and Frozen [17] under comparable settings to access their learning effi-
ciency.” The architecture of Frozen consists of a language model and an image encoder, where the image encoder is utilized
to extract features of text-related images. These features are then converted into multiple embedding vectors sharing the
same dimension as the text token embeddings. The objective of Frozen is the conventional causal language modeling [13, 2],
where the image embeddings are prepended to the sequence. During the learning process, the language model remains frozen
while the image encoder is learnable.

For implementations, we utilize the Huggingface Transformer library [18] and deliberately choose configurations that
maintain approximately equivalent learnable parameters across the different methods. For Frozen, we employ GPT-2 [13]

Uhttps://spacy.io/
2 As of this submission, Frozen [17] has not yet released the official implementation.



as the language model, which has 124M parameters, and ViT [4] with base and large configurations as the image encoder,
containing 86.39M and 304.35M parameters, respectively. Note that Frozen actually uses a 7B language model, which is
unfeasible for our devices (24GB VRAM), and thus we reduce the language model size. Therefore, the actual learning costs
for Frozen should be higher than our estimates. The model is trained with embedding sequences of length 512, consisting of
2 image tokens and 510 text tokens. For SINC, we also employ two configurations of GPT-2 as the meta encoder, containing
81.9M and 354.82M parameters, respectively. To extract features, we use METER [5], RoBERTa-base [9], and ViT-base [4]
for vision-language, language, and vision features. The meta model is trained with 8 demonstrations and 1 query data,
resulting in a representation sequence length of 17 (16 for demonstration data and label, and 1 for query data). The GFLOPs
and memory footprint are evaluated using the torch profiler library * as shown below.

from torch.profiler import profile

3 # Prepare data and targets

s with torch.profiler.profile (

activities=][
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,

] 4

with flops=True, profile_memory=True) as prof:
# Forward
outputs = model (xxinputs, output_hidden_states=True)
loss = loss_function (outputs, targets)
# Backward (if required)
loss.backward ()
optimizer.step()

)

events = prof.events()

> # Sum up the computation and memory consumption from events.

2. More Ablation Study

Tab. 1 presents additional ablation analyses for SINC. The results demonstrate the efficacy of the proposed correlation em-
beddings in enhancing the performance (row 2). This improvement can be attributed to the ability of correlation embeddings
to capture the relationship between the demonstrations and the query data. This relationship acts as a condition that compels
models to rely distinctively on the demonstrations for predictions, consequently leading to an improved performance.

We also explore alternative approaches to constructing self-supervision that could facilitate the transferability of SINC.
Our initial approach involves employing K-means clustering to generate 100 clusters for the image-text datasets, as previously
utilized. Subsequently, the data is labeled based on the corresponding cluster membership. We then randomly initialize 100
label embeddings to train models using SINC under the default setting. For downstream evaluation, since the pre-training
label embeddings are not associated with any specific semantics, we randomly select a corresponding number of embeddings
for downstream tasks. However, the evaluation results indicate that this approach fails to provide the ICL transferability
to downstream tasks (row 3). We hypothesize that this is mainly due to the limited and non-generalizable nature of the
pre-training label space. In comparison, the proposed methods effectively achieve transferability through the designs on
self-supervision construction and architectures, thereby demonstrating the superiority.

3. Prior Methods for Few-Shot Visual Entailment

SNLI-VE [19] is a dataset for visual entailment that is derived from the text entailment dataset SNLI [1]. A datum in
SNLI consists of a text premise and a text hypothesis, and the task is to determine whether the hypothesis entails, contradicts,
or is neutral to the premise. The text premises in SNLI are sourced from the image-captioning dataset Flickr30k [20], and
SNLI-VE is created by substituting these text premises with their corresponding images from Flickr30k. Therefore, the aim
of SNLI-VE becomes to predict the entailment relations between an image premise and a text hypothesis.

3https://pytorch.org/docs/stable/profiler.html



Setting VQAvV2 SNLI-VE NLVR2

val dev / test dev / test
Default | 44.42 53.35/53.23 54.97/56.39
Correlation Embeddings
w/ — w/o | 43.37-1.05  51.45/51.15-1.99  54.35/55.30 -0.86

Self-Supervision Construction
Proposed — Clustering | 1.02-434  33.35/33.29-19.97  50.00/50.02 -5.67

Table 1. Different settings of SINC. Across settings, the in-demo ratio is 0.2 and the number of demonstrations is 4 for fair comparisons,
which may not yield optimal values for tasks.

[15] presents a zero-shot cross-modality transfer technique for SNLI-VE with additional usage of fext premises from SNLI.
The approach involves training the CLIP text encoder [12] to align the text premise and text hypothesis. Subsequently, the
trained text encoder and the untrained CLIP image encoder are utilized to align the image premise and textual hypothesis,
leading to a zero-shot cross-modality scenario. The technique yields an accuracy of 64.11% and 64.66% on the development
and test sets of SNLI-VE, respectively. However, the method relies on text premises, which are not generally available.
Moreover, due to the annotation process of SNLI, text premises can provide significant advantages to the prediction. As per
[1], text hypotheses are generated by crowd-sourced annotators who were shown a text premise and asked to create entailing,
contradicting, and neutral sentences. During the annotation process, annotators are not permitted to see the corresponding
images of the text premises. Hence, the text premises should provide adequate information for predicting entailment rela-
tionships. Alternatively, if text premises are available, we can directly utilize language models for predictions. For example,
RoBERTa [9] can achieve an accuracy of 82.5% and 83.5% on the development and test sets of SNLI. Therefore, the findings
of [15] primarily indicate that cross-modality transfer is feasible with the additional annotation of accurate image description,
and we do not consider it as the baseline for our experiments on SNLI-VE.

4. Visualization of Pre-training and Downstream Prompts

We provide the visualization for pre-training and downstream prompts, including OD (Fig. 1), LID (Fig. 2), DID (Fig. 3),
fast concept binding (Fig. 4), VQAv2 (Fig. 5), SNLI-VE (Fig. 6), and NLVR2 (Fig. 7) prompts.



orange

spectators

f
il

I<mask> in thel I

blue sky

girl wearing
<mask> ski jacket

The house is a
light <mask>
color

school

for <mask> who
are watching
beyond the fence.

Two motorcyclists
performing stunts

A car parked on
the side of the
<mask>.

Woman is <mask>
bananas.

caution

<mask> up green
vegetables on a
plate.

boy and girl
playing a <mask>
of chess

man hole cover
<mask> street

bridge

Old red brick
Volga <mask>
house in Frank.

picture

Olympus OM10

<mask> has

Kodak colorplus started , which
converted to black means it 's
and white probably time to
<mask> talk halloween
photoshop costumes .
car base

A giant bonsai I

Milling, rushing

<mask> sign

cut out <mask> people in leaning up against
the overgrown <mask>, winter| a tree on the side
pine tree in our clothes. of the road.
front yard.
people sale hallway

red

Jerk boss in your
Jjerky <mask>
shirt

Brick wall behind
the <mask> and
groom.

front

see

love this idea fro

guy senior picture
... with their

<mask> they used

in high school !

house

The brick wall
‘was plastered and
painted with a
<mask> coat in
preparation for

e mural.

fish

Two <mask>
walking down a

Jjars with pickles
on <mask> in the

A <mask> shot of
a small apartment

sidewalk during a’ market style kitchen.
sunset.
drawer of dead

A <mask> double
decker bus parked
next to other
buses.

pitch

He is disgusted by
something in

<mask> of him.

basket

People can be
<mask> sitting
inside the open

door of the metro
train.

The road in front
of our <mask>
—completely
flooded.

A great blue
heron stalking
<mask> at lake
Boone near
Hudson/Stow, Ma

I

A cat is laying in a
desk <mask>.

Bottles <mask>
wine in rack.

<mask> fish cat| | baseball player in
toys by the YoYo| |motion <mask> at
Fabric Queen a game

film character , a
cute <mask> with

costume smiling .

and sold them.

<mask> in rows.

Figure 1. Examples of Out-Demo (OD) prompts in pre-training. Demonstrations are outlined in blue and query data is outlined in

Images are center-cropped for better visualization.
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Figure 2. Examples of Label-In-Demo (LID) prompts in pre-training. Demonstrations are outlined in blue and query data is outlined in
red. Images are center-cropped for better visualization.
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