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This supplementary material document contains the following two parts.

Part 1 presents details of the evaluation metrics, additional evaluation results, and detailed network
architecture of SIRA.

Part 2 presents more visualization and qualitative results.



Part 1.1: Evaluation Metrics in Experiments
Following the existing works, we present the definitions of the evaluation metrics we employed.

(i) Registration Recall (RR) is the fraction of successfully registered point cloud pairs. A point cloud
pair is said to be successfully registered when its transformation error is lower than threshold τ1. In
addition, the transformation error is defined as the root mean square error of the ground-truth correspon-
dences C∗, to which the estimated transformation Test(·) has applied:
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where px and qy denote the x-th point in source P and y-th point in target Q, respectively; [·] is the
Iversion bracket; and M is the number of all point cloud pairs.

(ii) Inlier Ratio (IR) is the fraction of inlier correspondences among all hypothesized correspondences
C. A correspondence is regarded as an inlier if the distance between the two points is lower than a certain
threshold τ2 under the ground-truth transformation Tgt(·):

IR =
1

|C|
∑
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]
. (3)

(iii) Feature Matching Recall (FMR) is the fraction of point cloud pairs whose IR > threshold τ3:

FMR =
1

M

M∑
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[
IRi > τ3

]
. (4)

(iv) Relative Rotation Error (RRE) is the geodesic distance in degrees between the estimated and
ground-truth rotation matrices Rest and Rgt:

RRE = arccos

(
trace(RT

est ·Rgt − 1)

2

)
. (5)

(v) Relative Translation Error (RTE) is the Euclidean distance between estimated and ground-truth
translation vectors test and tgt:

RTE = ∥test − tgt∥2. (6)

(vi) Transformation Recall (TR) is the fraction of successfully registered point cloud pairs, similar to
RR but using a different definition of successful registration:

TR =
1

M

M∑
i=1

[
RREi < τ4 and RTEi < τ5

]
. (7)

TR is also called RR in [1, 11], while we follow [13] to use TR to avoid ambiguity.

Following [2, 7, 11, 15], we set τ1 = 0.2m, τ2 = 0.1m, τ3 = 0.05, τ4 = 15◦, and τ5 = 0.3m for
evaluation on the 3DMatch and 3DLoMatch benchmarks. Following [13], we set τ1 = 0.5m, τ2 = 0.2m,
and τ3 = 0.05 for evaluation on the ETH benchmark.



Model 3DMatch 3DLoMatch

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study Lab Mean Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study Lab Mean

Registration Recall (%) ↑

PerfectMatch [5] 90.6 90.6 65.4 89.6 82.1 80.8 68.4 60.0 78.4 51.4 25.9 44.1 41.1 30.7 36.6 14.0 20.3 33.0
FCGF [4] 98.0 94.3 68.6 96.7 91.0 84.6 76.1 71.1 85.1 60.8 42.2 53.6 53.1 38.0 26.8 16.1 30.4 40.1
D3Feat [2] 96.0 86.8 67.3 90.7 88.5 80.8 78.2 64.4 81.6 49.7 37.2 47.3 47.8 36.5 31.7 15.7 31.9 37.2
PREDATOR [7] 97.6 97.2 74.8 98.9 96.2 88.5 85.9 73.3 89.0 71.5 58.2 60.8 77.5 64.2 61.0 45.8 39.1 59.8
CoFiNet [16] 96.4 99.1 73.6 95.6 91.0 84.6 89.7 84.4 89.3 76.7 66.7 64.0 81.3 65.0 63.4 53.4 69.6 67.5
GeoTrans [11] 98.9 97.2 81.1 98.9 89.7 88.5 88.9 88.9 91.5 85.9 73.5 72.5 89.5 73.2 66.7 55.3 75.7 74.0
RegTR∗ [15] 97.8 90.6 75.5 97.8 94.9 100.0 88.5 91.1 92.0 66.0 58.2 64.9 72.7 61.3 70.7 53.4 71.0 64.8

Our SIRA-PCR† 97.1 96.2 77.4 97.3 96.2 92.3 89.3 86.7 91.5 80.2 65.4 66.2 83.8 61.6 64.3 53.2 64.3 67.4
Our SIRA-PCR‡ 99.1 98.1 83.0 98.4 94.9 96.2 94.4 88.9 94.1 89.7 78.8 72.5 91.0 71.7 73.8 59.9 75.7 76.6

Relative Rotation Error (◦) ↓

PerfectMatch [5] 1.926 1.843 2.324 2.041 1.952 2.908 2.296 2.301 2.199 3.020 3.898 3.427 3.196 3.217 3.328 4.325 3.814 3.528
FCGF [4] 1.767 1.849 2.210 1.867 1.667 2.417 2.024 1.792 1.949 2.904 3.229 3.277 2.768 2.801 2.822 3.372 4.006 3.147
D3Feat [2] 2.016 2.029 2.425 1.990 1.967 2.400 2.346 2.115 2.161 3.226 3.492 3.373 3.330 3.165 2.972 3.708 3.619 3.361
PREDATOR [7] 1.861 1.806 2.473 2.045 1.600 2.458 2.067 1.926 2.029 3.079 2.637 3.220 2.694 2.907 3.390 3.046 3.412 3.048
CoFiNet [16] 1.910 1.835 2.316 1.767 1.753 1.639 2.527 2.345 2.011 3.213 3.119 3.711 2.842 2.897 3.194 4.126 3.138 3.280
GeoTrans [11] 1.797 1.353 1.797 1.528 1.328 1.571 1.952 1.678 1.625 2.356 2.305 2.541 2.455 2.490 2.504 3.010 2.716 2.547
RegTR∗ [15] 1.729 1.356 1.781 1.660 1.297 1.807 1.578 1.352 1.570 3.350 2.458 3.231 2.725 2.435 2.992 3.136 2.434 2.845

Our SIRA-PCR† 1.659 1.435 1.848 1.478 1.475 1.446 1.970 1.562 1.609 2.366 2.149 2.518 2.434 2.455 2.670 2.885 2.314 2.474
Our SIRA-PCR‡ 1.687 1.320 1.731 1.409 1.350 1.443 1.846 1.530 1.539 2.452 2.027 2.896 2.276 2.391 2.357 2.836 1.870 2.388

Relative Translation Error (m) ↓

PerfectMatch [5] 0.059 0.070 0.079 0.065 0.074 0.062 0.093 0.065 0.071 0.082 0.098 0.096 0.101 0.080 0.089 0.158 0.120 0.103
FCGF [4] 0.053 0.056 0.071 0.062 0.061 0.055 0.082 0.090 0.066 0.084 0.097 0.076 0.101 0.084 0.077 0.144 0.140 0.100
D3Feat [2] 0.055 0.065 0.080 0.064 0.078 0.049 0.083 0.064 0.067 0.088 0.101 0.086 0.099 0.092 0.075 0.146 0.135 0.103
PREDATOR [7] 0.048 0.055 0.070 0.073 0.060 0.065 0.080 0.063 0.064 0.081 0.080 0.084 0.099 0.096 0.077 0.101 0.130 0.093
CoFiNet [16] 0.047 0.059 0.063 0.063 0.058 0.044 0.087 0.075 0.062 0.080 0.078 0.078 0.099 0.086 0.077 0.131 0.123 0.094
GeoTrans [11] 0.042 0.046 0.059 0.055 0.046 0.050 0.073 0.053 0.053 0.062 0.070 0.071 0.080 0.075 0.049 0.107 0.083 0.074
RegTR∗ [15] 0.040 0.041 0.058 0.057 0.042 0.039 0.053 0.057 0.048 0.080 0.064 0.077 0.093 0.073 0.060 0.094 0.079 0.077

Our SIRA-PCR† 0.041 0.049 0.056 0.050 0.048 0.049 0.073 0.047 0.052 0.064 0.070 0.062 0.080 0.075 0.064 0.114 0.063 0.074
Our SIRA-PCR‡ 0.039 0.048 0.058 0.049 0.046 0.047 0.071 0.052 0.051 0.062 0.065 0.069 0.076 0.073 0.063 0.104 0.067 0.072

Table 1. Scene-wise registration results on the 3DMatch and the 3DLoMatch. †: the model is totally trained on the synthetic dataset. ‡: the
model is fine-tuned on the 3DMatch. ∗: the results produced using the released model. For better comparison, the best and second-best
results are marked in bold and underlined.

Part 1.2: More Experimental Results
In this section, we present additional experiments that evaluate our method. Note that we present these

additional experiments because different existing methods use different evaluation metrics/approaches.
Following [7, 11], we evaluate the scene-wise registration on the 3DMatch and 3DLoMatch datasets.

Tab. 1 reports the results. Since extremely large errors generated from failure cases can easily dominate
the results, median RRE and RTE for each scene are reported only on the successfully-registered pairs.
As RegTR [15] did not report such scene-wise results, we produce them using the released model. Our
method achieves the best performance (see the “mean” columns) for almost all cases (two datasets and
three metrics).

For a fair comparison with Lepard [9], we also report the results using the metrics following them.
Here, RR is averaged on all scan pairs, different from the one averaged over scenes in Tab. 1. As
Tab. 2 shows, our method achieves the best performance on all metrics for both datasets. Specifically,
it outperforms Lepard by 2.5/3.3 pp on 3DMatch/3DLoMatch with lower RRE and RTE, showing the
robustness and effectiveness of our method.

Following OIF-PCR [14], we report the mean median RRE and RTE obtained by RANSAC for the
successfully-registered scan pairs. As Tab. 3 shows, although methods with higher RR tend to generate
higher RRE and RTE since more challenging cases are taken into consideration, we can see that our
method always has better improvements in RRE and RTE regardless of RR (no matter higher/lower than
the competitors); see again Tab. 3. The robustness shown in this experiment is mainly attributed to the



absolutely accurate annotations generated by our approach.

Model 3DMatch 3DLoMatch

RRE ↓ RTE ↓ RR ↑ RRE ↓ RTE ↓ RR ↑
PREDATOR [7] 2.72 0.078 91.8 4.44 0.116 62,4
Lepard [9] 2.48 0.072 93.5 4.10 0.108 69.0
PREDATOR [7] + ICP 2.06 0.062 92.3 3.46 0.098 65.2
Lepard [9] + ICP 1.96 0.060 93.9 3.17 0.089 71.3
GeoTrans [11] 1.84 0.061 94.1 2.86 0.086 76.1

Our SIRA-PCR† 1.85 0.060 92.7 2.84 0.087 70.2
Our SIRA-PCR‡ 1.80 0.059 95.4 2.74 0.084 79.4

Table 2. Registration results on 3DMatch and 3DLoMatch following the metrics used in [9]. †: the model is only trained on the synthetic
dataset. ‡: the model is fine-tuned on 3DMatch.

Model
3DMatch 3DLoMatch

RRE ↓ RTE ↓ RRE ↓ RTE ↓
5000 2500 1000 500 250 5000 2500 1000 500 250 5000 2500 1000 500 250 5000 2500 1000 500 250

GeoTrans [11] 1.871 1.924 1.929 1.959 2.047 0.065 0.067 0.066 0.066 0.068 2.954 3.007 3.129 3.089 3.187 0.090 0.091 0.093 0.093 0.093
OIF-PCR [14] 1.859 1.895 1.940 1.981 2.023 0.064 0.064 0.067 0.070 0.068 3.040 3.026 3.117 3.073 3.203 0.092 0.092 0.092 0.093 0.095

Our SIRA-PCR† 1.787 1.894 1.943 2.048 1.983 0.060 0.061 0.059 0.061 0.061 2.735 2.817 2.989 2.972 2.941 0.085 0.087 0.087 0.084 0.084
Our SIRA-PCR‡ 1.862 1.767 1.891 1.907 2.012 0.063 0.056 0.060 0.061 0.061 2.846 2.813 2.873 2.940 3.110 0.085 0.083 0.083 0.086 0.087

Table 3. Supplimentary registration results obtained by RANSAC on 3DMatch and 3DLoMatch. †: the model is only trained on the
synthetic dataset. ‡: the model is fine-tuned on 3DMatch.

Following [1, 8, 11, 13], we evaluate our method using RRE, RTE, and TR. As Tab. 4 shows, the
difference between RR and TR lies in the definition of successful registration. RR uses RMSE to measure
whether a scan pair is finely registered, whereas TR uses RRE and RTE. As Tab. 4 shows, even totally
trained only on synthetic data, our method can still achieve comparable performance as the closest
competitor GeoTrans [11] on 3DMatch. After being further fine-tuned on the training set of 3DMatch,
our method shows the best performance. Particularly for TR, our method surpasses the previous best by
1.5/3.3 pp on 3DMatch/3DLoMatch.

Model 3DMatch 3DLoMatch

RRE ↓ RTE ↓ TR ↑ RRE ↓ RTE ↓ TR ↑
FCGF+FGR [17] 2.82 8.36 78.6 5.28 12.98 20.0
FCGF+DGR [3] 2.40 7.48 91.3 4.17 10.82 43.8
FCGF+DHVR [8] 2.25 7.08 91.9 4.14 12.56 54.4
FCGF+PointDSC [1] 2.06 6.55 93.3 3.87 10.39 56.1
GeoTrans [11] 1.98 5.69 95.0 2.98 8.55 77.5
RoReg [13] 1.84 6.28 95.5 3.09 9.30 72.0

Our SIRA-PCR† 1.98 5.79 94.7 2.98 8.75 71.5
Our SIRA-PCR‡ 1.91 5.66 97.0 2.88 8.48 80.8

Table 4. Registration results on 3DMatch and 3DLoMatch following the metrics used in [1, 8, 11, 13]. †: the model is only trained on the
synthetic dataset. ‡: the model is fine-tuned on 3DMatch.

In [6], an unsupervised domain adaptation approach, named UDGE, has been proposed to apply cubic
cropping on 3DMatch to generate pairs. However, as shown in Tab. 5, UDGE shows limited gains
compared with the baseline when it is applied to domain adaptation from our synthetic indoor dataset
FlyingShapes to the real-world indoor dataset 3DMatch. Since generated point cloud pairs have the
same coordinates in overlap regions, it may cause over-fitting of the feature extractor during training,
leading to performance degradation. The results also show the necessity of the sim-to-real adaptation
(SIRA) in our pipeline.

In Tab. 6, we present supplementary ablation results on FMR and IR metrics. Our SIRA improves
performance on all metrics consistently, showing its effectiveness.



Model 3DMatch 3DLoMatch
RRE ↓ RTE ↓ RR ↑ FMR ↑ IR ↑ RRE ↓ RTE ↓ RR ↑ FMR ↑ IR ↑

(a) baseline 1.672 0.051 87.5 95.5 59.5 2.521 0.074 63.8 77.8 30.6

(b) UDGE [6] 1.710 0.050 87.1 94.4 65.0 2.666 0.074 55.5 71.8 31.5
(c) SIRA† 1.609 0.052 91.5 97.7 65.5 2.474 0.074 67.4 81.7 35.8

Table 5. Comparison with another UDA method in [6].

Model 3DMatch 3DLoMatch
FMR ↑ IR ↑ RR ↑ FMR ↑ IR ↑ RR ↑

Fl
yi

ng
Sh

ap
es (a) Structured3D 94.1 49.8 85.5 65.9 18.9 48.6

(b) 3DFront 87.9 42.7 74.8 48.7 12.3 33.5
(c) + ShapeNet 93.8 57.0 85.6 69.4 25.2 55.1
(d) + Delete planes 95.6 59.7 87.0 72.5 28.5 57.4
(e) + Structured3D 95.5 59.5 87.5 77.8 30.6 63.8

SI
R

A

(a) baseline 95.5 59.5 87.5 77.8 30.6 63.8
(b) uniform noise 96.3 62.5 88.6 77.2 30.7 62.7
(c) Gaussian noise 97.1 63.9 89.3 78.6 32.6 63.8
(d) TSDF 95.3 60.1 87.9 78.3 31.0 63.9
(e) w/o ARM 97.3 65.4 90.8 81.7 36.2 65.3
(f) w/o multi-scale 97.5 65.3 91.2 80.6 35.8 66.6
(g) SIRA† 97.7 65.5 91.5 81.7 35.8 67.4

Table 6. Supplementary results of ablation studies.

Part 1.3: Network Architecture Details
Fig. 1 depicts the detailed network architecture of SIRA. The generator of SIRA is an encoder-decoder

structure based on the KPConv backbone [12]. Group normalization and LeakyReLU are applied after
each KPConv layer. To better capture the point pattern distributions, the first KPConv layer is applied to
the point clouds with 30,000 points, which are randomly sampled rather than voxel downsampled from
the original dense point clouds. The l-th strided convolution is applied to a voxel-downsampled point
cloud with voxel size 0.025·2l m. The upsampling module in the generator is performed by searching the
corresponding feature of the closest point from the previous layer. ARMs are applied to each upsampling
step to provide adaptive point positions. The discriminator is a multi-scale architecture. Encoders based
on the same simplified PointNet structure [10], i.e., a shared MLP followed by max-pooling, first extracts
the features of multi-scale local patches with 5/10/20 points. The features are then concatenated together,
being fed into the subsequent 5-layer shared MLP for classification. For more details, please see our code

Part 1.4: Details in evaluation on ETH
There are many differences, such as the density and the scale, between the point clouds from indoor

3DMatch and outdoor ETH. Thus, it is improper for models totally trained on indoor datasets to be
directly evaluated on outdoor benchmarks. For this reason, following [13], we scale the point cloud
from ETH to 1/10 of its original size before inference. Note that the point cloud will be rescaled to its
original size when computing metrics for a fair comparison.

Part 2: More Visualization and Qualitative Results
For better observation, we provide some visualization results in the video in our supplementary ma-

terial. Layouts of 10 selected indoor scenes in FlyingShapes are displayed, including depth and seg-
mentation images from different viewpoints. We also provide more qualitative results on 3DMatch and
3DLoMatch benchmarks in our video. The results from GeoTrans [11] and RegTR [15] are shown for
comparison. More qualitative results on the ETH benchmark are presented in the video as well.
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Figure 1. Architecture details of SIRA.
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