
Supplementary Material for Single-Stage Diffusion NeRF: A Unified Approach
to 3D Generation and Reconstruction

Hansheng Chen,1,* Jiatao Gu,2 Anpei Chen,3 Wei Tian,1 Zhuowen Tu,4 Lingjie Liu,5 Hao Su4

1Tongji University 2Apple 3ETH Zürich
4University of California, San Diego 5University of Pennsylvania

A. Details on Batch-Wise Rendering Loss
During single-stage training and test-time reconstruc-

tion, we randomly sample a batch of rays Bray from all
available observations for each rendering pass. The actual
rendering loss needs to be rescaled to account for the batch
size |Bray|.

For single-stage training and test-time finetuning based
on Adam [6], we rescale the rendering loss to keep its over-
all magnitude invariant to the batch size |Bray|:

Lrend({xi}, ψ) = E
i

[
Nrayi

|Bray|
∑

j∈Bray

1

2

∥∥ygtij − yψ(xi, rgtij)∥∥2],
(8)

where Nrayi is the total number of observed rays of the i-th
scene.

For test-time gradient guidance, however, we treat the
sampled batch Bray as if it constitutes the full observation
set. Thus, the gradients originally defined in Eq. (5) are
actually calculated by:

g ←∇x(t)λ
Bray

rend

∑
j∈Bray

1

2

(
α(t)

σ(t)

)2ω∥∥∥ygtj − yψ(̂xϕ(x(t), t), rgtj)∥∥∥2,
(9)

in which the balanced rendering weight λBray

rend := crend(1−
e−0.1N

Bray
v)/N

Bray
v is determined by the batch-effective

number of views NBray
v instead of the number of all avail-

able views Nv, with their relationship defined as:

NBray
v =

|Bray|
Nray

Nv, (10)

where Nray is the total number of observed rays of a test
scene.

B. Implementation and Hyperparameters
B.1. Implementation Details

We implement our models using PyTorch and MMGen-
eration toolkit [1]. Our NeRF renderer is based on a pub-

*Work done during a remote internship with UCSD.

lic codebase torch-ngp [13], which employs a density-based
grid pruning strategy for efficient real-time rendering.

B.2. Hyperparameters

Table 4 presents the complete list of architec-
ture/training/testing hyperparameters used in our experi-
ments. It is worth noting that we adopt step decay policy
for both the learning rate and number of inner loop itera-
tions Kin during training.

The major difference between unconditional- and
reconstruction-purposed models is the training schedule,
where reconstruction-purposed training stops early at 80K
iterations, as mentioned in the main paper. Other differ-
ences lie in the U-Net dropout rate and latent learning rate,
which may have marginal effects on the reconstruction per-
formance.

Regarding the Langevin correction step in the form of
x(t) ← x(t) − 1

2δσ
(t)ϵ̂ +

√
δσ(t)ϵ with step size δ and in-

dependent noise ϵ ∼ N (0, I), we observe that this tech-
nique is more effective in reconstructing Chairs than Cars.
Therefore, to reduce inference time, Langevin correction is
not used for SRN Cars dataset. Our intuition is that Chairs
dataset exhibits higher variety in geometry, and Langevin
correction helps better explore the latent space by injecting
random noising during sampling.

B.3. Training and Inference Time

We train all our models using two RTX 3090 GPUs,
each processing a batch of 8 scenes. On average, a single
outer training step takes around 0.5 sec, 80K iterations take
around 11 hours, and 1M iterations cost around 6 days.

Under the unconditional generation setting (50 DDIM
steps), sampling a batch of 8 scenes takes 4.63 sec on a sin-
gle RTX 3090 GPU. Under the reconstruction setting with
the same batch size, a single guided DDIM step or Langevin
step takes 0.21 sec, and a single outer finetuning step takes
0.28 sec (whenKin = 4). This sums up to around 23 sec for
reconstructing a batch of 8 Cars (single-view), and 102 sec
for reconstructing a batch of 8 Chairs (single-view) with ad-

1

Unconditional Reconstruction

Cars (full) Cars (3-view) Tables (full) Cars (full) Cars (3-view) Chairs (full)

x shape 3×6×128×128
Latent dimensionality dim (X) 294912
U-Net base channels 128
U-Net channel multiplier 1, 2, 2, 4, 4
U-Net depth 2
U-Net attention resolutions 32, 16, 8
U-Net attention heads 4
U-Net dropout 0.0 0.0 0.0 0.1 0.1 0.1
Diffusion steps 1000
Noise schedule Linear

Scene batch size |Bsc| 16
Ray batch size |Bray| 4096
Rendering weight constant crend 40 × 2−14

Diffusion weight constant cdiff 4
SNR power ω 0.5 0.5 0.5 0.5 0.5 0.25
Outer loop iterations Kout 1M 2M 1M 80K 80K 80K

Inner loop iterations Kin


16, kout ≤ 2K,
4, 2K < kout ≤ 100K,
2, kout > 500K.

{
16, kout ≤ 2K,
2, kout > 2K.


16, kout ≤ 2K,
4, 2K < kout ≤ 100K,
2, kout > 500K.

{
16, kout ≤ 2K,
4, kout > 2K.

{
16, kout ≤ 2K,
2, kout > 2K.

{
16, kout ≤ 2K,
4, kout > 2K.

Latent base learning rate 0.005 0.005 0.003 0.01 0.01 0.01
Decoder base learning rate 0.001 0.001 0.0006 0.001 0.001 0.001
Diffusion base learning rate 0.0001 0.0001 0.00006 0.0001 0.0001 0.0001

Learning rate multiplier
{
1, kout ≤ 500K,
0.5, kout > 500K.


1, kout ≤ 500K,
0.5, 500K < kout ≤ 1M,

1, 1M < kout ≤ 1.5M,

0.5, kout > 1.5M.

{
1, kout ≤ 500K,
0.5, kout > 500K.

1 1 1

Ray batch size |Bray| 16384
DDIM steps 50 50 50 75 75 75
Langevin inner iterations 0 0 0 0 0 5
Langevin step size δ 0.4
Guidance scale λgd - - - 3.2 × 214 0.8 × 214 0.4 × 214

Rendering weight constant crend 40 × 2−14

FT Diffusion weight constant c′diff 1
FT SNR power ω 0.5 0.5 0.5 0.5 0.5 0.25
FT outer loop iterations Kout 0 0 0 Table 6 Table 6 Table 6
FT inner loop iterations Kin Table 6
FT latent base learning rate Table 6
FT learning rate multiplier 0.998kout·Kin+kin

Table 4. Architecture/training/testing hyperparameters. kout, kin correspond to the outer and inner loop iteration indices in Algorithm 1.
214 is the number of pixels per view.

ditional Langevin steps. Once the triplane latent codes are
sampled, neural rendering can be performed in real time to
synthesize the output images.

C. Additional Model Details

In the interest of reproducibility, this section provides ad-
ditional details about the models used in our experiments.
These techniques were not discussed in the main paper, be-
cause they are not essential components of the proposed
method, and they seem to have negligible effect on the over-
all results (Table 5). Nevertheless, we have included them
in our implementation to maintain consistency with an ear-
lier version of our codebase where they were found to be
useful at one stage.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓

SSDNeRF (standard) 23.52 0.913 0.078 16.39
W/o Tanh 23.59 0.913 0.077 16.34
W/o L2 regularization 23.48 0.913 0.077 16.62

Table 5. Single-view reconstruction results on SRN Cars, showing
that Tanh and L2 regularization are likely to be redundant.

C.1. Bounding the Latents via Tanh Mapping

In an earlier version of our implementation of the diffu-
sion model, we use the ϵ̂ prediction format as in DDPM [4]
instead of the current v̂ format proposed by [10]. To sta-
bilize denoising-based sampling process, the ϵ̂ format re-
quires clipping the denoised prediction x̂ at each step, which

2

Nv View indices Kout Kin LR PSNR↑ SSIM↑ LPIPS↓ FID↓

1 64 25 4 0.005 23.52 0.913 0.078 16.39
2 64, 104 50 4 0.01 26.49 0.944 0.054 10.66
4 0, 83, 167, 250 100 4 0.02 28.29 0.955 0.049 11.09
8 0, 36, 71, 107, 143, 179, 214, 250 160 5 0.04 31.26 0.973 0.035 8.54

16 0, 17, 33, 50, 67, 83, 100, 117, 133, 150, 167, 183, 200, 217, 233, 250 200 8 0.08 34.31 0.986 0.018 3.09
32 0, 8, 16, 24, 32, 40, 48, 56, 65, 73, 81, 89, 97, 105, 113, 121,

129, 137, 145, 153, 161, 169, 177, 185, 194, 202, 210, 218, 226, 234, 242, 250 200 8 0.08 35.66 0.989 0.015 2.35

Table 6. Details on sparse-to-dense reconstruction on SRN Cars dataset, including the number of input views Nv and their indices, number
of finetuning outer loop iterations Kout, number of finetuning inner loop iterations Kin, finetuning learning rate of the latent code, and
novel view synthesis evaluation results.

Figure 10. Failure case (a) and (b) in single-view NeRF reconstruction from real images. Sample (c) resolves this issue by reducing the
guidance scale λgd.

is suitable for bounded data. This motivated us to bound the
latent code xi element-wise via an additional Tanh layer.

Specifically, let xi := s · tanhxrawi be the bounded la-
tent code within the interval (−s, s), where xrawi denotes
a raw, unbounded parameterization of the code. During
single-stage training and test-time finetuning, we perform
optimization on the leaf variable xrawi in the unbounded
space. During test-time sampling, the denoised prediction
x̂ is thus hard-clipped to [−s, s] as well. We set the scale
hyperparameter s to 2 in all our experiments.

Because our final models have switched to the v̂ predic-
tion format, Tanh mapping may not be an essential compo-
nent of SSDNeRF, as indicated in Table 5.

C.2. Additional L2 Regularization

L2 latent regularization in auto-decoder training origi-
nates from the assumed Gaussian latent prior [9]. In two-
stage diffusion NeRF [8] or occupancy field [11] models,
L2 regularization helps control the norm of the latent codes
and discourage outlying values with respect to the clipping
during sampling. During single-stage training and test-time
finetuning, we also keep this regularization term in the ac-
tual loss function:

L = λrendLrend({xi}, ψ) + λdiffLdiff({xi}, ϕ)

+
λreg

dim (X)
E
i

[
∥xi∥2F

]
, (11)

where dim (X) is the latent dimensionality, and the regular-
ization weight λreg is set to 0.003. However, as suggested in
Table 5, L2 regularization also has negligible impact under
the single-stage training framework.

D. Experiment Details and Additional Results

D.1. Details on Sparse-to-Dense Reconstruction

Table 5 presents more details on the experiment settings,
testing hyperparameters, and evaluation results of sparse-
to-dense reconstruction on SRN Cars dataset.

Overall, we find that more iterations and higher learning
rate are required when finetuning on more input views, but
the learning rate should not exceed the upper bound of 0.08
for stability, and a maximum of 200 outer loop iterations
(totaling 1600 inner loop iterations) are sufficient for dense-
view settings.

D.2. Single-View Reconstruction from Real Images

In this subsection, we provide addition experiments on
single-view NeRF reconstruction from real images, using
the model trained on the synthetic SRN Cars dataset. This
demonstrates the generalization capability of SSDNeRF un-
der substantial domain gap.

Data Preparation We extract images of vehicles from the
KITTI 3D object detection dataset [2], which provides an-
notated 3D bounding boxes of objects in the camera view.
We use the provided ground truth bounding box dimensions
and poses to align the objects in the same world coordinate
system as in SRN Cars dataset. In addition, we leverage
the segmentation masks annotated by Heylen et al. [3] to
remove the background. All images are cropped and re-
sized to 128×128. In real applications, one could also use a
monocular 3D object detector and an instance segmentation
model to obtain these inputs.

3

Figure 11. Single-view NeRF reconstruction from real images.

Testing Hyperparameters We enable Langevin correc-
tion (5 iterations) to better handle out-of-distribution
scenes, and we adopt a different setting of guidance scale
λgd := 0.4 × 214 and finetuning diffusion weight constant
c′diff := 4.

Qualitative Results and Failure Case We present qual-
itative examples of novel views and extracted meshes in
Figure 11. Apart from that, we have also noticed a fail-
ure case where a large portion of the geometry is missing
(Figure 10 (a)). Nevertheless, this issue can be resolved by

4

reducing the guidance scale λgd (Figure 10 (c)). Overall,
we observed that a guidance scale that is too large can re-
sult in an unstable sampling process, ultimately leading to
corrupted geometries.

D.3. Addition Qualitative Examples

We show randomly sampled scenes generated by SSD-
NeRF in Figure 12, Figure 13, and Figure 14. For single-
view reconstruction, we compare the novel views predicted

by SSDNeRF to those predicted by CodeNeRF [5] and Vi-
sionNeRF [7] in Figure 15 and Figure 16.

Figure 12. Uncurated samples generated by SSDNeRF trained on SRN Cars dataset.

5

Figure 13. Uncurated samples generated by SSDNeRF trained on ABO Tables dataset.

6

Figure 14. Uncurated samples generated by SSDNeRF trained on a 3-view subset of SRN Cars. Note that the failure case (right column,
fifth row from the bottom) is caused by the few outlier training samples, in which the objects are not properly aligned in scale and position
due to a data preprocessing issue in SRN Cars [12].

7

Input CodeNeRF VisionNeRF
SSDNeRF
3-v subset

SSDNeRF
w/o finetune SSDNeRF Ground truth

Figure 15. Single-view reconstruction on unseen test objects in SRN Cars.

8

Input CodeNeRF VisionNeRF
SSDNeRF

w/o finetune SSDNeRF Ground truth

Figure 16. Single-view reconstruction on unseen test objects in SRN Chairs.

9

References
[1] MMGeneration Contributors. MMGeneration: Openmm-

lab generative model toolbox and benchmark. https://
github.com/open-mmlab/mmgeneration, 2021. 1

[2] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In CVPR, 2012. 3

[3] Jonas Heylen, Mark De Wolf, Bruno Dawagne, Marc Proes-
mans, Luc Van Gool, Wim Abbeloos, Hazem Abdelkawy,
and Daniel Olmeda Reino. Monocinis: Camera independent
monocular 3d object detection using instance segmentation.
In ICCV Workshops, 2021. 3

[4] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In NeurIPS, 2020. 2

[5] Wonbong Jang and Lourdes Agapito. Codenerf: Disentan-
gled neural radiance fields for object categories. In ICCV,
pages 12949–12958, 2021. 5

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 1

[7] Kai-En Lin, Lin Yen-Chen, Wei-Sheng Lai, Tsung-Yi Lin,
Yi-Chang Shih, and Ravi Ramamoorthi. Vision transformer
for nerf-based view synthesis from a single input image. In
WACV, 2023. 5

[8] Norman Müller, , Yawar Siddiqui, Lorenzo Porzi, Samuel
Rota Bulò, Peter Kontschieder, and Matthias Nießner. Diffrf:
Rendering-guided 3d radiance field diffusion. In CVPR,
2023. 3

[9] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In CVPR, 2019. 3

[10] Tim Salimans and Jonathan Ho. Progressive distillation for
fast sampling of diffusion models. In ICLR, 2022. 2

[11] J Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner,
Jiajun Wu, and Gordon Wetzstein. 3d neural field generation
using triplane diffusion. In CVPR, 2023. 3

[12] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In NeurIPS,
2019. 7

[13] Jiaxiang Tang. Torch-ngp: a pytorch implementation
of instant-ngp. https://github.com/ashawkey/
torch-ngp, 2022. 1

10

https://github.com/open-mmlab/mmgeneration
https://github.com/open-mmlab/mmgeneration
https://github.com/ashawkey/torch-ngp
https://github.com/ashawkey/torch-ngp

