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This is a supplementary material for Sparse Sampling
Transformer with Uncertainty-Driven Ranking for Unified
Removal of Raindrops and Rain Streaks.

We provide the following materials in this manuscript:

 Sec.1 Formulation of rain streaks and raindrops.

* Sec.2 more details on the UDR-S2Former pipline.
* Sec.3 performance vs. run-time.

* Sec.4 performance vs. memory cost.

* Sec.5 additional ablation studies.

* Sec.6 more visual comparisons.

e Sec.7 future works.

1. Formulation

Rain streaks. Rain streaks are defined as the visible lines
that accumulate on an image due to rain. To address this
issue, a clean background scene B is defined and added to
the accumulated rain streaks S to form the rain streak image
Rs:

Rs=B+S (1)

which can then be used to obtain the clean image 5 by re-
moving the rain streaks S.

Raindrops. Similarly, raindrops can distort images, but this
distortion can be decomposed into two parts: a clean back-
ground B and blurry or obstruction effects of the raindrops
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D in small scattered regions, the raindrops model can be
expressed as:

Ra=(1-M,)6B+D, )

where M is a binary mask that identifies which pixels be-
long to the raindrop regions and which belong to the back-
ground. Raindrop removal aims to obtain a clear, rain-free
image by eliminating the raindrop effect.

In the real world, these two kinds of degradations often
occur together, and they cannot be simply combined, so it
is vital to develop networks that can jointly remove them to
deal with this situation.

2. The Proposed Architecture
2.1. Uncertainty Map in UDR-S?Former

For the framework we designed, we need to output two
variables, the uncertainty map and the expected rain-free
image B,,,.. For the uncertain output, we are consistent with
the previous work [8], using a simple Conv-ELU to gener-
ate the uncertainty map for the place where uncertainty is
required.

2.2. Convolutional Block

Our UDR-S%Former approach employs simple convo-
lutional blocks to extract degraded image features during
the Feature Extraction stage. As presented in Fig.1 (a),
we aim to extract complex rain scene information in high-
dimensional space for subsequent global modeling. In-
spired by previous work [1], we first increase the chan-
nel dimension to twice that of the input channels to con-
struct more discriminative features. Then use the DWConv-
LN-GELU-DWConv design to capture sufficient rain in-
formation. Finally, we strengthen channel interaction by
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Table 1: Comparison of speed and GFLOPs of previous SOTA deraining methods in different resolutions (§3).

256 %256 patch 320x320 patch 448 x448 patch 512512 patch PSNR +
#GFLOPs (G) #Times (s) | #GFLOPs (G) #Times (s) | #GFLOPs (G) #Times (s) #GFLOPs (G) #Times (s)
CCN [9] 245.85 0.031 384.13 0.046 752.90 0.090 983.38 0.115 34.79
MPRNet [15] 148.55 0.025 232.11 0.036 454.94 0.067 594.20 0.084 34.99
DGUNet [7] 199.74 0.044 312.09 0.061 611.71 0.115 798.95 0.147 35.34
Uformer [12] 19.69 0.021 30.76 0.034 60.30 0.078 78.76 0.084 34.99
Restormer [14] 140.99 0.086 220.30 0.133 Out of Memory  Out of Memory | Out of Memory  Out of Memory 36.08
IDT [13] 57.89 0.068 90.46 0.128 Out of Memory  Out of Memory | Out of Memory  Out of Memory 36.23
UDR-S?Former 21.58 0.031 33.72 0.042 66.10 0.071 86.33 0.082 3691

adding a channel attention mechanism [6] before reducing
the number of channels. Experiments demonstrate that our
approach is simple and effective, ensuring excellent infor-
mation extraction performance while maintaining low infer-
ence time and computational complexity.

2.3. Transformer Block

After Feature Extraction, we perform deep-level global
modeling using the vanilla transformer block, including
multi-head self-attention [5] and multi-scale feedforward
network [3]. For the obtained feature Fp € RHXWXC
we reshape it to Fg € RVXC (N = H x W) and adopt
learnable WSXC, WX and WS to project the Fp
into Q (FEWg), K (FEWK) and V (FgWy). To improve
the local extraction ability, we also add a 3x3 depthwise
convolution:

T

Softmax (%’%) xV + DWConv(Fg), 3)

where H, W, and C represent the height, width, and num-
ber of dimensions. Softmax(-) is the the Softmax opera-
tion. To carry out the above operations, we utilize multi-
head self-attention following the approach outlined in [5].

For the feedforward stage, we utilize the multi-scale
feedforward network [3] to enhance the modeling of com-
plex and diverse degradations in rain scenes. To this end,
the transformer block can be expressed as:

]:;5 =Frg+ MSA(LN(]‘-E))7

R “)

Fg = Fi + MFFN(LN(F%)),
where Fg; denotes the feature processed by the global mod-
eling via transformer block. LN is the LayerNorm, and
the residual connection is employed followed by vanilla
ViT [5].

2.4. Refinement Block

For image restoration, incorporating a refinement mod-
ule in the final stage of the network can aid in detail-focused
processing. Specifically, the proposed refinement block em-
ploys channel attention to refine features at different stages,

ultimately achieving non-trivial restoration of details in the
final feature map. The detail of such a design is shown in
Fig.1 (b).

3. Computation Time Comparison

In this section, we showcase our speed advantages. We
conduct all inference stages on an RTX3090 GPU to ensure
a fair comparison. We use the torch.cuda.synchronize()
API function to obtain accurate feed-forward runing times.
Our results in Table 1 demonstrate that UDR-S2Former
clearly outperforms the previous method CCN [4] for uni-
fied removal of rain streaks and raindrops, in terms of
GFLOPs, inference time, and PSNR gain, particularly
for high resolution. Furthermore, our proposed UDR-
S2Former achieves superior model complexity and runing
time performance compared to other general image restora-
tion methods. Even the state-of-the-art Restormer [14]
architecture encountered a "CUDA out of memory” is-
sue when processing high-resolution images. Additionally,
UDR-S%Former significantly surpasses IDT [13] in running
time and GFLOPs, while maintaining an excellent balance
between PSNR and speed (36.23PSNR — 36.91PSNR).

4. Memory Cost Comparison

In addition to comparing speed, we also measure the
memory cost of our proposed approach for rain removal us-
ing a single RTX3090 GPU. As demonstrated in Table 4,
UDR-S?Former incurs the lowest memory cost during in-
ference, indicating the suitability of our method for practi-
cal applications.

5. Additional Ablation Studies

In order to fully research the proposed UDR-S?Former,
we present a more exhaustive set of ablation studies. The
individual components are then elucidated in the subsequent
sections.

5.1. Superiority of Convolutional Block

In this section, we research the effectiveness of the pro-
posed convolutional block by experimenting with various
configurations. Specifically, we investigate the importance
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Figure 1: Detailed structure of proposed convolutional block and refinement block.

Table 2: Ablation studies on Convolutional Block (§2.2).

Table 3: Ablation studies on Transformer Block (§2.3).

Setting Model #Param #GFLOPs PSNR SSIM Setting Model #Param #GFLOPs PSNR SSIM
i 1X 5.32M 19.66G 36.37  0.962 i w/o DWConv ~ 8.50M 21.58G 36.81  0.965
ii 3X 11.72M 22.94G 36.96 0.967 ii MLP [5] 8.76M 21.72G 36.66  0.964
iii One DWConv ~ 8.45M 21.37G 36.68  0.964 il ConvFFEN [11]  8.62M 21.69G 36.64 0.964
iv w/o CA 7.03M 21.56G 36.53  0.963 iv LeFF [12] 8.38M 21.52G 36.79  0.965
v Ours 8.53M 21.58G 3691  0.966 v Ours 8.53M 21.58G 3691  0.966

Table 4: Comparison of memory cost in inference process
tested with 256 x256 resolution (§4).

Method

(CVPR’2021)CCN [4]
(CVPR’2021)MPRNet [15]
(CVPR’2022)DGUNet [7]
(CVPR’2022)Uformer [12]
(CVPR’2022)Restormer [14]
(TPAMI’'2022)IDT [13]

UDR-S?Former I

H Memory Cost PSNR 1

2874M 34.79
2527M 34.99
3618M 35.34
3019M 34.99
3696M 36.08
3547M 36.23

2502M 36.91

of critical designs such as high-dimensional space ampli-
fication, the number of DWConv, and channel attention.
Our findings, presented in Table 2, indicate that leveraging
high-dimensional space can capture complicated rain degra-
dation information effectively. Additionally, the DWConv
layers significantly enhance local feature extraction without
significantly increasing the number of parameters. Further-
more, channel attention aids in channel-wise modeling in
high dimensions. It’s important to note that while a more
extensive scaling factor can improve network performance,
it requires more time and computational resources for train-
ing. As such, we set the scaling factor to 2 in our paper.

5.2. Improvements of Transformer Block

Our study aims to assess the effects of different com-
ponents within the transformer block. Specifically, we ex-
amine the impact of (i) excluding the DWConv operation
from the transformer block (w/o DWConv), (ii) using a tra-
ditional MLP-based feed-forward network [5] instead of the

presented MFFN (MLP), (iii) employing the ConvFEN [1 1]
instead of the proposed MFFN (ConvFFN), (iv) comparing
the performance of LeFF [12] and MFFN (LeFF), and (v)
using the MFEN to demonstrate the superiority of our ap-
proach (Ours). Our experimental results, reported in Ta-
ble 3, show that the DWConv operation can improve per-
formance by complementing self-attention. Moreover, the
MFFN has the most significant impact on the PSNR metric
compared to other notable designs.

5.3. Gains of Refinement Block

We conduct ablation experiments on refinement block
(RB) and present our advantages compared to the
corresponding paradigm of refinement block in the
Restormer [14] (Single-stage). Table 5 shows that com-
pared with the Restormer, we can achieve better results by
using multi-stage refinement to preserve more perfect de-
tails.

Table 5: Ablation studies on Refinement Block (§2.4).

Setting Model #Param #GFLOPs PSNR SSIM
i w/o RB 8.39M 12.53G 3642 0.962
il Single-stage [14]  8.43M 14.56G 36.56  0.963
il Ours 8.53M 21.58G 3691  0.966

5.4. Effectiveness of Loss Function

In our study, we investigate different loss functions to
determine their effectiveness. We choose PSNRIoss [2] in-
stead of L1 loss as our reconstruction loss and demonstrate



Table 6: Comparison of different sets on loss functions (§5.4).

Setting Module Metric
Ly ['psnr Lperceptual (1,3,5,9,13) L:pe'fceptua,l (1,3) Lypr intermediateLypr, PSNR/SSIM
Baseline v v v 36.71/0.964
i v v v 36.79/0.965
iii v v v v 36.94 /0.966
iv v v Nan / Nan
v v v v 36.69 / 0.964
vi (Ours) v v v v 36.91/0.966

that perceptual loss and uncertainty loss are superior for our
training supervision. Table 6 shows that PSNRloss has an
advantage over L1 loss, and perceptual loss is beneficial
during training due to its supervision at the feature level.
For the rain removal task, we only use the 1-th and 3-th
shallow layers of the VGG [10] network, which saves GPU
memory and achieves impressive results. Finally, we find
that uncertainty loss helps the network generate uncertainty
maps. Intermediate layer supervision is more robust to the
uncertainty maps at each stage in our image reconstruction
module.

6. More Visual Comparisons

We present more visual comparisons against state-of-
the-art methods on synthetic and real datasets to demon-
strate the excellent visual performance of UDR-S?Former
on removing raindrops and rain streaks.

6.1. Synthectic Datasets

UDR-S%Former can effectively eliminate complex and
challenging rain degradations as demonstrated in Fig.2 and
Fig.3, due to its robust degradation relationship modeling.
Additionally, the ability to restore fine details is also notice-
able compared with previous state-of-the-art methods.

6.2. Real-world Dataset

To demonstrate the impressive performance of our model
in real-world scenarios, we present extensive visual com-
parisons in Fig.4 and Fig.5. Our observations indicate that
our UDR-S%Former can improve image quality and effec-
tively remove complex degradations, while other algorithms
often struggle with complex rain degradations. Moreover,
UDR-S%Former outperforms state-of-the-art methods in ef-
fectively handling diverse degradations.

7. Future Work

In future, we plan to explore the potential of uncertainty
for various tasks while enhancing our overall architecture to
make it more efficient and less computationally complex.
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Figure 2: Visual comparisons for unified rain removal on synthetic dataset among CCN [9], MPRNet [15], DGUNet [7],
Restormer [14], IDT [13], NAFNet [1] and our proposed UDR-S?Former. Please zoom them for better watching.
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Figure 3: Visual comparisons for unified rain removal on synthetic dataset among CCN [9], MPRNet [15], DGUNet [7],
Restormer [14], IDT [13], NAFNet [1] and our proposed UDR-S?Former. Please zoom them for better watching.
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Figure 4: Visual comparisons for unified rain removal on real-world dataset among CCN [9], MPRNet [15], DGUNet [7],
Restormer [14], IDT [13], NAFNet [1] and our proposed UDR-S?Former. Please zoom them for better watching.



(b) GT (c) CCN (d) MPRNet (e) DGUNet

-
-
-
-
-
-
-
-

(f) Restormer (g) IDT (h) NAFNet (i) Ours

|
|
l
i

(b) GT (c) CCN (d) MPRNet (e) DGUNet

|
3
|
§

(a) Input (f) Restormer (9) IDT (h) NAFNet (i) Ours

(b) GT (c) CCN (d) MPRNet (e) DGUNet

(a) Input (f) Restormer (g) IDT (h) NAFNet (i) Ours

Figure 5: Visual comparisons for unified rain removal on real-world dataset among CCN [9], MPRNet [15], DGUNet [7],
Restormer [14], IDT [13], NAFNet [ 1] and our proposed UDR-S?Former. Please zoom them for better watching.
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