
Supplementary Material for Traj-MAE: Masked Autoencoders for
Trajectory Prediction

1. Autobots Architecture.

Autobots [4] is a class of encoder-decoder architectures
that process sequences of sets. This model is designed to
process a tensor of dimensions K×M× t as input, where K
is the number of attributes of each agent, M is the number
of agents, and t is the input sequence length. To transform
the K-dimensional vectors to a new space of dimension dK
(hidden size), it applies a row-wise feed-forward network
(rFFN) to each row along the t×M plane. Following the ad-
dition of positional encoding (PE) to the t axis, the encoder
processes the tensor through L layers of repeated multi-head
attention blocks (MAB) that apply time encoding and social
encoding to the time and agent axes, respectively. Finally,
the encoder outputs the context tensor. In the decoder, the
encoded map and the learnable seed parameters tensor are
first concatenated and then passed through an rFFN. The
resulting tensor is then processed through L layers of re-
peated multi-head attention block decoder (MABD) along
the time axis using the context from the encoder, followed
by a MAB along the agent axis. The output of the decoder
is a tensor of dimensions dK×M×T×c, which can then be
element-wise processed using a neural network to produce
the desired output representation. T is the output sequence
length and c is the number of modes. AutoBot-Ego is a spe-
cial case, which is similar to AutoBots but predicts future
modes for only one agent in a scene.

2. Implementation Details.

For pre-training, we use an Adam optimizer [6] with a
fixed learning rate 1e-3. We set the same number of train-
ing stages as the number of pre-training strategies. When
performing continuous pre-training, the number of steps for
each strategy in all training steps adds up to 120k. In terms
of the trajectory prediction task, we fine-tune Autobots on
three challenging datasets, and utilize Adam as an opti-
mizer. For the Argoverse dataset [3], we use Autobot-Ego
as our baseline model, the initial learning rate is set at 3e-
5, and for the Interaction [14] and TrajNet++ [9] datasets,
Autobot is used as the baseline model, we set the initial
learning rates at 5e-5 and 7e-5, respectively. We anneal the
learning rate every 6k by a factor of 2 in the first 30k steps,

Method minADE minFDE MR
DESIRE [7] 0.92 1.77 0.18
MultiPath [2] 0.80 1.68 0.14

TNT [15] 0.73 1.29 0.09
LaneRCNN [13] 0.77 1.19 0.08

TPCN [11] 0.73 1.15 0.11
mmTransformer [8] 0.71 1.15 0.11

DenseTNT [5] 0.82 1.37 0.07
HiVT[16] 0.66 0.96 0.09

DCMS[12] 0.64 0.93 -
GANet[10] 0.67 0.93 -

Autobot-Ego [4] 0.73 1.10 0.12
Traj-MAE 0.60 ↓ 18% 1.00 ↓ 9% 0.09 ↓ 25%

Table 1: Comparison with state-of-the-art methods on
the Argoverse validation set.

and the total training steps are 120k. The batch size of train-
ing and testing of all the above tasks is 64. The Traj-MAE
is implemented by PyTorch and all experiments can be done
on a single V100.

3. Metrics.

For the task to predict the ego-agent’s future trajectory,
we use minADE, minFDE and MR to evaluate our method,
which are respectively the minimum Average Displacement
Error, the minimum Final Displacement Error and the Miss
Rate, respectively. Considering the multi-agents’ future tra-
jectories prediction task, we calculate ego-agent’s predic-
tion error and scene-level prediction error as defined by [1]
on TrajNet++. Similarly, MinJointADE, MinJointFDE and
MinJointMR are used to calculate multi-agents’ prediction
error. CrossCollisionRate represents the frequency of col-
lisions happening among the predictions of all agents and
EgoCollisionRate represents the collisions happening be-
tween ego-agent and others. When only considering those
modalities without cross collision, Consistent MinJointMR
is calculated as the case’s miss rate. All of the above met-
rics are the lower the better. The lower metrics reflect better
performance.
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Method Pre-training strategy Training steps Fine-tuning result
Stage1 Stage2 Stage3 minADE minFDE MR

Continual Learning
S 120k - -

0.664 1.075 0.108T - 120k -
ST - - 120k

Multi-task Learning
S 120k

0.693 1.089 0.113T 120k
ST 120k

Continual Pre-training
S 60k 30k 30k

0.621 1.027 0.099T - 90k 30k
ST - - 120k

Table 2: Continual Pre-training for trajectory reconstruction. Note that ’S’, ’T’, ’ST’ represent social masking, temporal
masking, social and temporal masking strategy, respectively.

Method Pre-training strategy Training steps Fine-tuning result
Stage1 Stage2 Stage3 minADE minFDE MR

Continual Learning
Po 120k - -

0.656 1.069 0.107Pa - 120k -
B - - 120k

Multi-task Learning
Po 120k

0.685 1.081 0.112Pa 120k
B 120k

Continual Pre-training
Po 60k 30k 30k

0.627 1.033 0.102Pa - 90k 30k
B - - 120k

Table 3: Continual Pre-training for map reconstruction. Note that ’Po’, ’Pa’, ’B’ represent point masking, patch masking,
block masking strategy, respectively.

Num Modules minADE minFDE MR
E1 baseline 0.730 1.100 0.120
E2 E1 + map encoder 0.732 1.096 0.119
E3 E2 + trajectory pre-train 0.621 1.027 0.099
E4 E3 + map pre-train 0.604 1.003 0.092

Table 4: Ablation on the effectiveness of our modules.

4. Experimental Results

Argoverse validation set. In Table 1, we verify our method
on the Argoverse validation set and demonstrate superior
performance, achieving the lowest minADE score of 0.60
compared to other approaches. Furthermore, in comparison
to our baseline model, our Traj-MAE exhibits a noteworthy
reduction in minFDE and MR from 1.10 to 1.00 (9%) and
0.12 to 0.09 (25%), respectively.
Continue Pre-training. To investigate the properties of our
proposed continual pre-training, we compare it with contin-
ual learning and multi-task learning. As we can see from
Table 2 and Table 3, all method train each strategy with
the same steps for a fair comparison. Our proposed contin-
ual pre-training achieves the best fine-tuning results. More-
over, multi-task learning, which learns multiple strategies

at the same time, achieves little improvement compared to
our baseline model. This could be that reconstructing with
so many strategies simultaneously is too hard for the model
to learn, thus even hurting the model’s representation abil-
ity. We hope that future work will explore the different
novel designs of continual learning and multi-task learning
to make them suitable for trajectory prediction.
Module Analysis. Table 4 shows the effectiveness of dif-
ferent modules of our Traj-MAE. First, we find that adding
a map encoder directly to process the HD map brings little
improvement to Autobots, and even hurts the model’s per-
formance on minADE. Pre-training the trajectory encoder
can improve the accuracy significantly, especially on mi-
nADE. What’s more, the accuracy can be further improved
when we pre-train the map encoder on the basis of E3.
Thus, the validity of our proposed trajectory pre-training
module and map pre-training module can be proved.

5. Visualization
We show several examples of reconstruction in Figure 1

and Figure 2. The motion forecasting results on the Argo-
verse validation set are shown in Figure 3. Samples are all
chosen from the Argoverse validation set.



Figure 1: Reconstruction results on historical trajectory.



Figure 2: Reconstruction results on HD map.

Figure 3: The motion forecasting results on the Argoverse validation set. The historical trajectory of the target agent is in
green, predicted trajectories in orange and ground truth in red, respectively.
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