
Figure 7: Empirical Fisher Criterion (FC) values for ResNet-
50 classification model. FC values for discriminants are non-
trivial whereas that for discriminant orthogonals approach zero.
This verifies our assumption that WLDA disentangle discrimina-
tive and residual information from the feature space.

A. Model details
For ResNet-50 and ViT-B/16 classifiers, we adopt the

feature encoder trained with a single-layer classification
head on the ImageNet-1k training dataset. ViT-B/16 refers
to the base model variant (layer=12, dimension D = 768,
heads=12) with 16⇥ 16 input patch size. For the CLIP vi-
sual encoder, we adopt the ResNet-50 model trained with
ViT-B/32 language encoder. We discard the language model
and only use visual encoder in our experiments. The in-
put data is cropped and resized to 224 ⇥ 224 for ResNet
models (including ResNet-50 classification encoder, Sup-
Con, and CLIP), and 384⇥384 for ViT-B/16. For both Ma-
halanobis [31] and WDiscOOD, we L2-normalize the fea-
ture for models directly trained on inner products between
visual features (including SupCon model with Supervised
Contrastive loss on normalized feature, and ViT with atten-
tion mechanism). We found that a normalized feature space
enhances OOD detection performance when the inner prod-
uct between image features is trained to encode similarity.

B. Baseline details
Mahalanobis We remove the input preprocessing and
feature ensemble techniques proposed in the original pa-
per [31] for small-scale benchmarks, as we find that they
compromise the performance on large-scale benchmarks.
Instead, we follow SSD [38] and apply the Mahalanobis
distance directly to the penultimate layer feature. 200,000
random training samples are used for calculating the preci-
sion matrix and class-wise centroids.

KNN For all models, we L2-normalize the features fol-
lowing the original work [41]. The KNN score is calculated

on 200,000 random training data. The nearest number is
downscaled proportionally based on k = 1000 for the full
training set.

ReAct Following the practice of [44], we use the most
e↵ective Energy+ReAct setting. We also adopt rectification
percentile p = 99 instead of p = 90 from original work [40]
for better performance.

Principle Residual (PR) The settings for Principle
Residual (PR) baseline evaluated in Sec. 4.3 are adopted
from ViM [44]. Prior to principle component estimation, we
center the features based on classification layer weights and
bias. 1000 principle components are used when the feature
dimension is greater than 1500 (ResNet-50, SupCon,CLIP),
otherwise 512 principle components are used (for ViT).

C. Empirical Fisher Criterion Value
To empirically verify our assumption that WLDA dis-

entangles discriminative and residual information, we com-
pare the Fisher Criterion (FC) values for discriminants and
discriminant residuals from ResNet-50 classification model
trained on ImageNet; see Fig. 7. The FC values for discrim-
inants are non-trivial, indicating separation of ID features
along the directions. On the other hand, the projections
along discriminant orthogonal directions are non-separable,
as the FC values in those subspaces are close to zero. This
verifies our assumption that WLDA separate class-specific
and class-agnostic information, and explains the superior
performance of WDiscOOD method.

D. Detailed Results on SupCon and CLIP
Sec. 4.2 provides the average results for WDiscOOD

and the feature-space baselines on SupCon and CLIP visual
encoders. Here, Tab. 5 gives the AUROC and FPR95 mea-
sures on all six OOD datasets

E. OOD detection in the Embedding space
Both SupCon and CLIP formulate the contrastive loss in

a low-dimensional feature space obtained from a projection
head. As explained in Sec. 4, we follow KNN [41] and
SSD [31] to apply all feature-space methods on the penul-
timate layer feature space for better performance. To fur-
ther verify the claim, we test all feature-space methods, in-
cluding KNN, Mahalanobis, and the proposed WDiscOOD,
in the embedding spaces. For hyperparameters in WDis-
cOOD, we choose ND = 512 and ↵ = 1 for CLIP embed-
dings with D = 1024 dimensions, and ND = 50 and ↵ = 1
for SupCon model with embedding dimension as D = 128.



Method
Textures SUN Places iNaturalist ImgNet-O OpenImg-O Average

FPR95#AUROC" FPR95#AUROC" FPR95#AUROC" FPR95#AUROC" FPR95#AUROC" FPR95#AUROC" FPR95#AUROC"

Maha [31] 14.80 95.62 63.09 86.76 68.93 84.20 33.41 95.06 65.50 83.00 35.96 94.05 46.95 89.78
KNN [41] 15.18 95.62 47.97 89.29 58.33 85.45 30.30 94.83 66.10 83.88 37.18 93.05 42.51 90.35
WDiscOOD 13.94 95.84 47.87 89.40 58.21 86.34 21.49 96.21 66.50 83.27 32.59 94.26 40.10 90.89

(a) SupCon [27].

Method
Textures SUN Places iNaturalist ImgNet-O OpenImg-O Average

FPR95#AUROC" FPR95#AUROC" FPR95#AUROC" FPR95#AUROC" FPR95#AUROC" FPR95#AUROC" FPR95#AUROC"

Maha [31] 54.11 89.77 81.36 77.45 83.87 78.21 97.74 56.41 76.50 74.89 74.42 75.13 78.00 75.31
KNN [41] 59.61 88.92 89.65 69.86 90.33 70.76 99.59 36.52 75.35 73.48 80.98 63.77 82.59 67.22
WDiscOOD 54.10 89.85 81.45 78.33 81.54 80.14 96.81 57.69 76.95 74.38 74.59 74.05 77.57 75.74

(b) CLIP [36].

Table 5: Results on SupCon [27] and CLIP [36] visual encoders. We test all methods on six OOD datasets and compute
the average performance. Both metrics AUROC and FPR95 are in percentage. We highlight the best performance in bold.
WDiscOOD more consistently outperforms the alternatives for both encoders in terms of average FPR95 and AUROC.

Method Space SupCon [27] CLIP [36]
FPR95# AUROC" FPR95# AUROC"

Maha
Embed

54.74 86.61 97.06 67.83
KNN 55.96 86.40 96.42 61.81
WDisc 53.10 87.22 92.25 63.26
Maha Last

Layer

46.95 89.78 78.00 75.31
KNN 42.51 90.35 82.59 67.22
WDisc 40.10 90.89 77.57 75.74

Table 6: Comparison between penultimate feature space
and embedding space for SupCon [27] and CLIP [36]
for all feature-space methods. Low-dimensional embed-
dings are less information for OOD detection compared to
penultimate layer features, suggesting potential loss of in-
formation critical for the task.

Comparision between performance in the embedding
space and penultimate feature space is in Tab. 6, where
all methods su↵er from performance degradation in the em-
bedding space. The results show that distance between vi-
sual features in the embedding space do not imply similar-
ity, which is potentially caused by lost information due to
limited dimensionality.


