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1. Notation

Indices
x, y data input (i.e., image data in image classification) and data label
n index for edge devices (n ∈ {1, · · · , N})
r index for rounds (r ∈ {1, · · · , R})
k index for local training iterations (k ∈ {1, · · · ,K})
c index for class for image classification (c ∈ Y)
X ,Y input space and output space
Z representation embedding space
Sc the set of indices satisfying y = c
Data and Weights
D whole dataset
Dn(Dn) local dataset (the size of local dataset) of device n
wr

g weight of server model on the round r

wr,k
n weight of device n on the round r and local iteration k

zn ∈ Z embedding of device n
β Parameter for the Dirichlet Distribution
Contrastive Regularization
pc Evaluation accuracy that reflects the performance of the global model on class c.
τ Temperature on contrastive loss
λ Hyperparameter for the effect of weight contrastive regularization



2. Weakness of existing overlapping schemes
We describes different overlapping schemes that are recently proposed in FL frameworks in Section 2.2. The training

timeline of different federated learning frameworks is shown in Fig. 1.

(a) FedAvg synchronous.

(b) DGA [7].

(c) Our proposed FedCR.

Figure 1: Comparison between different FL frameworks. The memory block represents the memory storage for local training.
d represents the total number of model parameters. In (c), since our FedCR can support heterogeneous model training
on-device, hence 0 < ds ≤ d.

FedAvg (Fig. 1a) waits for the latest global parameters at t0+E before the next round local computing. The overlapping
schemes (Figs. 1b & 1c) allow devices to continuously perform local computing, using global model from t0 instead of the
latest model at t0+E , while communicating with the FL server. Different from FedAvg, overlapping schemes have staleness
issue because current round local training is not based on the latest global parameters, but the global parameters from the
previous round.

Next, we provide detailed discussion and experiments on the two downside of the existing overlapping schemes, i.e.,
memory inefficiency and accuracy degradation.

2.1. Memory inefficiency

Memory footprint/usage is one of the key design factors of FL training over edge devices, since those devices usually have
much less memory capacity compared with GPU clusters. However, the state of art overlapping techniques, DGA, is not
memory-efficient for edge devices: to compensate for the stale model parameters (e.g., model differentials or model weights),
each edge device has to locally store multiple copies of its old local model updates for update correction. Thus, the memory
consumption increases linearly with the staleness level. For severe staleness, the memory usage for keeping these gradient
copies becomes enormous. As demonstrated in Table 1, a large staleness greatly increases the memory usage for local training.
Considering a edge device like Raspberry Pi 4 Model B with only 1GB or 2GB DRAM memory, it cannot support the training
when the staleness S ≥ 10, where the memory requirement for training ResNet is almost equal to its maximum memory
capacity.

2.2. Accuracy degradation

We empirically examine how data heterogeneity and staleness affect their performance by training a ResNet20 on CIFAR10
dataset. The number of FL clients is set to 10. All parties engage in every round to eliminate the effect of randomness
introduced by client sampling. The label ratios in each FL client’s dataset follow Dirichlet distribution with a concentration
parameter β, where a small value of β represents high level of data heterogeneity. The same experiment setting is used in Fig.
1 that is shown in the main paper.



Table 1: Memory usage per local training iteration (Mem) and the total number of Multiply Accumulate operations per local
training (MACs) of DGA [7] under different staleness levels S. The batch size is 64.

S=0 S=5 S=10 S=20

CIFAR100/RESNET20
MEM 60MB 253MB 492MB 972MB

MACS 555M 555M 555M 555M

CIFAR10 / CNN
MEM 16MB 20.28MB 24.56MB 33.12MB

MACS 216K 216K 216K 216K

Figure 2: FL global model performance with different levels of data heterogeneity and staleness. The models are trained with
800 communication rounds and K = 10.

The testing accuracy of three existing overlapping approaches over varying degrees of data heterogeneity and staleness is
given in Fig. 2. When staleness value equals 0, the overlapping approaches reduce to FedAvg. We can see that when data
distributions of clients differ greatly (small β), the testing accuracy decreases dramatically with staleness level. Moreover, for
all four non-IID settings, those overlapping designs have no advantage over FedAvg as they have lower testing accuracy than
FedAvg (staleness equals to 0). Taking β = 0.1 for example, the accuracy of Pipe-SGD falls dramatically from 64% to 26%
when the staleness level increases from 5 to 20, and the accuracy of DGA falls to 46% when staleness increases to 20. On the
other hand, with less data heterogeneity (β = 1), the accuracy of DGA only has a small accuracy drop. This implies that the
local update modification is more suitable for IID cases.

3. Regularization and Contrastive Learning

Table 2: Comparison between FedCR and peer FL designs.

UPDATE

RULES

DATA

HET.
DEVICE

HET.
HET.

SUBNET

MOON INTERLEAVED ✓ × ×
FEDPROX INTERLEAVED ✓ ✓ ×

DGA OVERLAPPING × × ×
FEDCR OVERLAPPING ✓ ✓ ✓

Adding regularizer to local on-device training can help mitigate model divergence across devices with heterogenous training
data. For example, FedProx [5] introduces a proximal term into the local training objective to restrict the local model updates.
The proximal term aims to minimize the ℓ2 norm distance between the current global model and local models. SCAFFOLD [2]



corrects the local updates by introducing trainable control variables. MOON [3] is a recent regularization approach inspired by
contrastive learning (CL), which creates invariance of the input-output mapping to improves generalization. The key idea of
CL is to pull positive pairs together and push negative pairs apart. Thus, it helps learn the local feature representation similar
to the global feature representation. Inspired by the CL [1, 6], our FedCR approach treats global model weights and local
model weights as positive pair to regularize the local model training. Thus, FedCR is expected to automatically regularize
the local model divergences in the presence of straggler issue and data heterogeneity, in a memory-efficient manner. Table 2
provides a comparison between FedCR and status que FL models.

4. Experiment Setup
Hyperparameter setting. We use the SGD optimizer with a learning rate of 0.01 for all approaches. The SGD weight decay
and momentum are set to 5 ∗ 10−4 and 0.9, respectively. For global aggregation, we follow the weighted averaging strategy
used in FedAvg [4]. The dimension of the fixed projector in FedCR is 256 as in [1].
Subnetwork setting. The MACs and model size of subnetworks are summarized in Fig. 3.

Table 3: MACs and parameters of each subnetwork.

Methods CNN ResNet20 ResNet34
pc = 0.2 pc = 0.6 pc = 1 pc = 0.2 pc = 0.6 pc = 1 pc = 0.2 pc = 0.6 pc = 1

MACs 8M 28M 60M 1.2G 3.2G 6G 94M 2.3G 4.8G
Model size 46KB 126KB 235KB 8.7MB 23.56MB 42.83MB 14.34MB 45.23MB 81.59MB

Edge device in Testbed. The FedCR is implemented on testbed, as illustrated in the main paper. On FL client side, we
consider three types of edge device developer kits: NVIDIA Jetson Xavier NX, NVIDIA Jetson TX2, and NVIDIA Jetson
Nano. For experiments, our testbed used twenty edge devices in total. Their profiles are summarized in Table 4.

Table 4: Edge Device Specification.

Name CPU GPU RAM
Jetson Xavier NX Carmel Arm v8.2 Volta GPU (21TOPs) 8 GB

Jetson TX2 Cortex-A57 Pascal GPU (1.33TFLOPs) 8 GB
Jetson Nano Cortex-A57 Maxwell GPU (472 GFLOPs) 4 GB

In Tiny-ImageNet task, we consider a simulated environment where there are 100 edge devices in total and we only
randomly sampled 20% devices to participate in each round of the FL training process.

5. More experiments
5.1. Training time budgets.

Table 5: The testing accuracy of different approaches when training for the same amount of time with β = 0.5.

Methods CIFAR10 Tiny-ImageNet
400s 800s 1600s 2000s 4000s 8000s

DGA 61.15 75.3 81.34 5.45 12.54 19.42
Overlap-Prox 73.2 79.03 81.97 8.23 12.62 17.33

Overlap-MOON 68.83 80.17 86.12 10.89 14.61 20.52
FedCR 79.4 84.56 87.23 15.97 18.81 24.3

We have conducted experiments with different time budgets, and shown the results in Table 5 above. We can observe that,
given the fixed time budget, FedCR can consistently yield better testing accuracy than its peer approaches.



(a) Acc. vs round (CIFAR-10) (b) Acc. vs time (CIFAR-10) (c) Acc. vs round (CIFAR-100) (d) Acc. vs round (CIFAR-100)

Figure 3: The testing accuracy of different schemes under dynamic network condition.

5.2. Dynamic communication condition.

In the main paper, we have evaluated the performance under a fixed network latency scenario. We further the experimental
results with dynamic network latency, as shown in Fig. 3. Here, we simulate the transmission time of different mobile devices
with the mean 0.71s and standard deviation 0.24s to characterize the communication uncertainty. The other experimental
settings are the same. From Fig. 3, we see that FedCR outperforms DGA, Overlap Prox, and LGC, in terms of both overall
training time and model accuracy. FedCR has less training time than Overlap-MOON to reach the same target testing accuracy.

5.3. Projection Head.

Table 6: The test accuracy with/without projection head.

Methods CIFAR-10 CIFAR-100 Tiny-ImageNet
No projection head 80.3% 61.77% 25.01%

Fixed projection head 84.2% 62.81% 25.17%
Learnable head 87.2% 66.48% 26.17%

Here we study the effect of the projection head. We compare FedCR with that without any projection head and conduct
experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet. The results are shown in Table6. We can observe that the
projection head help improve the performance of FedCR. The accuracy of FedCR can be improved by about 4% on average
with a projection head. We also observe that the non-linear projection head can further improve the performance of FedCR.
While as we show in main paper, the computation complexity and memory of non-linear projection head is much large than
the fixed projection head in FedCR. Hence, we choose FedCR with fixed projection head in resource-limited edge devices.

6. Hyper-Parameters Study
Different values of λ. We show the accuracy of FedCR with different λ in Table 7. Note that when λ = 0, FedCR is
Pipe-SGD and we will replace with DGA scheme. The results are shown in Table 7. The best λ for CIFAR-10, CIFAR-100,
and Tiny-ImageNet are 1, and 1, 5, respectively. First, we can observe that the accuracy of FedCR with a small value of λ
(λ = 0.1) is close to that of DGA (i.e., λ = 0). It is because the effect of contrastive regularization is small. When λ ≥ 1,
FedCR can benefit from the contrastive regularization.

Table 7: The test accuracy of FedCR with β = 0.5.

λ CIFAR-10 CIFAR-100 Tiny-ImageNet
0 (DGA) 81.4% 58.7% 23.1%

0.1 83.5% 59.8% 24.7%
1 84.3% 62.5% 25.2%
5 84.1% 61.6% 25.5%

10 83.1% 61.1% 23.6%



Different output dimension of fixed projector. We tune the output dimension of fixed projection head from {128, 256, 384, 512}.
The results are shown in Table 8. The best output dimension for CIFAR-10, CIFAR-100 and Tiny-ImageNet are 256, 256, 384.
We can observe that fixed projection head with the higher dimension can improve the performance in more complex learning
tasks. However, when the output dimension of fixed projector is set too large, the model converges to FedCR w/o projection
head and the performance will degrade.

Table 8: The test accuracy of FedCR with β = 0.5.

Output dimension CIFAR-10 CIFAR-100 Tiny-ImageNet
128 84.1% 62.2% 25.1%
256 84.3% 62.5% 25.1%
384 84.1% 62.3% 25.3%
512 83.7% 61.2% 24.7%
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