
Contrastive Continuity on Augmentation Stability Rehearsal for Continual
Self-Supervised Learning

Haoyang Cheng, Haitao Wen, Xiaoliang Zhang, Heqian Qiu ∗,
Lanxiao Wang, Hongliang Li ∗

University of Electronic Science and Technology of China, Chengdu, China
chenghaoyang@std.uestc.edu.cn, haitaowen@std.uestc.edu.cn, xlzhang@std.uestc.edu.cn,

hqqiu@uestc.edu.cn, lanxiao.wang@std.uestc.edu.cn, hlli@uestc.edu.cn

A. Proofs of the relation between C2ASR and
the Information Bottleneck (IB) principle

We show that Lτ is an upper bound of the IB principle,
as follows:

Lτ = − log

exp
∑

Bτ
t−1

log
p
(
zt|τ |zτ|τ

)
p
(
zt|τ

)
exp

∑
Dt

log
p
(
zt|t|zτ|t

)
p
(
zt|t

) + exp
∑

Bτ
t−1

log
p
(
zt|τ |zτ|τ

)
p
(
zt|τ

)
(1)

= log

exp
∑
Dt

log
p
(
zt|t|zτ|t

)
p
(
zt|t

) + exp
∑

Bτ
t−1

log
p
(
zt|τ |zτ|τ

)
p
(
zt|τ

)
exp

∑
Bτ
t−1

log
p
(
zt|τ |zτ|τ

)
p
(
zt|τ

)
(2)

= log


1 +

exp
∑
Dt

log
p
(
zt|t|zτ|t

)
p
(
zt|t

)
exp

∑
Bτ
t−1

log
p
(
zt|τ |zτ|τ

)
p
(
zt|τ

)


(3)

> log

exp
∑
Dt

log
p
(
zt|t|zτ|t

)
p
(
zt|t

)
exp

∑
Bτ
t−1

log
p
(
zt|τ |zτ|τ

)
p
(
zt|τ

)
(4)

=
∑
Dt

log
p
(
zt|t|zτ|t

)
p
(
zt|t

) −
∑
Bτ
t−1

log
p
(
zt|τ |zτ|τ

)
p
(
zt|τ

) (5)

=

E
Dt

log p
(
zt|t|zτ|t

)
p
(
zt|t

)


1
|Dt|

−

E
Bτ
t−1

log p
(
zt|τ |zτ|τ

)
p
(
zt|τ

)


1∣∣∣Bτt−1

∣∣∣
(6)

= |Dt| I
(
Zt|t;Zτ|t

)
−
∣∣∣Bτt−1

∣∣∣ I (Zt|τ ;Zτ|τ
) (7)

> I
(
Zt|t;Zτ|t

)
−

∣∣∣Bτt−1

∣∣∣
|Dt|

I
(
Zt|τ ;Zτ|τ

) (8)

B. Ablation study
B.1. The accuracy maps across the task streams

In this part, we report the accuracy maps across the
task streams on Split CIFAR-10 in Table 1. Specifically,

∗Corresponding authors.

the accuracy map includes the knn accuracies on all seen
tasks after training each task, where TriTej corresponds
to the value of row i and column j in each accuracy map.
Compared with FINETUNE, LUMP and CaSSLe† have
alleviated catastrophic forgetting. However, LUMP suf-
fers from the overfitting effect, whose F1, F2, F3 and
F4 still reach 2.49%, 4.84%, 3.12% and 3.17% respec-
tively. Compared with LUMP which utilizes random sam-
pling strategy for rehearsal, the proposed ASR which sam-
ples the most representative and discriminative samples by
estimating the augmentation stability for rehearsal makes
greater improvements, whose F1, F2, F3 and F4 outper-
form LUMP by 0.04%, 0.80%, 1.80% and 0.94% respec-
tively. In addition, the average accuracy of ASR outper-
forms LUMP by 0.69%. CaSSLe† acquires better anti-
forgetting performance, whose average forgetting F out-
performs LUMP by 0.78%. However, CaSSLe† has a phe-
nomena that it prevents the model from learning new task
streams. Specifically, the Tr2Te2, Tr3Te3, Tr4Te4 and
Tr5Te5 of CaSSLe† are lower than FINETUNE by 3.06%,
2.89%, 0.05% and 1.00% respectively. Compared with
CaSSLe†, the proposed C2ASR preserves as much infor-
mation shared among seen task streams as possible to pre-
vent catastrophic forgetting, whose average forgetting F
outperforms CaSSLe† by 0.11%, and dismisses the redun-
dant information between previous task streams and cur-
rent task stream to free up the ability to encode fresh infor-
mation, whose Tr2Te2, Tr3Te3 and Tr5Te5 outperform
CaSSLe† by 1.38%, 1.65% and 1.29% respectively. There-
fore, the average accuracy of C2ASR outperforms CaSSLe†

by 0.94%.

B.2. The results based on existing popular self-
supervised learning methods

We give the average accuracy and average forget-
ting of the proposed C2ASR based on existing popular
self-supervised learning methods on Split CIFAR-10, e.g.,

Table 1: The accuracy maps across the task streams on Split CIFAR-10. CaSSLe† is the improved reproduced version by
incorporating with the replay strategy in LUMP [6] to make a fair comparison.

FINETUNE LUMP [6] CaSSLe† [4]

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

96.97 89.17 89.16 88.84 93.32 96.82 95.62 95.16 94.68 94.33 96.94 95.95 95.72 94.72 94.43

- 88.94 83.83 82.70 80.45 - 86.61 83.32 81.81 81.77 - 85.88 84.87 83.49 82.31

- - 94.68 90.31 87.57 - - 91.53 89.74 88.41 - - 91.79 91.44 90.71

- - - 97.51 93.60 - - - 97.60 94.43 - - - 97.46 94.13

- - - - 97.25 - - - - 96.41 - - - - 96.25

FINETUNE ASR(Ours) C2ASR(Ours)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

96.97 89.17 89.16 88.84 93.32 96.84 95.92 94.68 94.43 94.39 96.92 95.96 95.54 94.79 94.48

- 88.94 83.83 82.70 80.45 - 86.65 84.83 83.03 82.61 - 87.26 85.07 84.52 84.21

- - 94.68 90.31 87.57 - - 91.06 90.09 89.74 - - 93.44 92.38 91.43

- - - 97.51 93.60 - - - 97.21 94.98 - - - 97.43 94.87

- - - - 97.25 - - - - 97.06 - - - - 97.54

Table 2: The results (Average Accuracy and Average Forgetting) of collaboration with existing popular self-supervised
learning methods on Split CIFAR-10. All methods are pre-trained with Resnet-18 as backbone for 200 epoches on Split
CIFAR-10 and evaluated with KNN classifier [7]. CaSSLe† is the improved reproduced version by incorporating with the
replay strategy in LUMP [6] to make a fair comparison. All the performances are measured by calculating the mean and
standard deviation across three trials. The Top-2 results are highlighted in bold and underlined respectively.

MoCo v2 [2] BYOL [5]

Accuracy Forgetting Accuracy Forgetting

FINETUNE 89.27(±0.51) 4.70(±0.81) 88.49(±0.52) 4.93(±0.77)
LUMP [6] 91.56(±0.25) 2.24(±0.29) 91.14(±0.48) 2.61(±0.37)

CaSSLe† [4] 91.74(±0.36) 1.82(±0.47) 91.65(±0.52) 2.51(±0.49)

C2ASR(Ours) 92.07(±0.28) 1.73(±0.34) 92.43(±0.40) 2.25(±0.46)

SimSiam [3] BarlowTwins [8]

Accuracy Forgetting Accuracy Forgetting

FINETUNE 90.11(±0.12) 5.42(±0.08) 87.72(±0.32) 4.08(±0.56)
LUMP [6] 91.00(±0.40) 2.92(±0.53) 90.31(±0.30) 1.13(±0.18)

CaSSLe† [4] 91.51(±0.38) 2.77(±0.54) 90.97(±0.35) 1.09(±0.41)

C2ASR(Ours) 92.47(±0.41) 2.59(±0.58) 91.34(±0.26) 0.94(±0.22)

MoCo v2 [2], BYOL [5], BarlowTwins [8], as shown
in Table 2. Our C2ASR always achieves better results
than existing continual self-supervised learning methods,
which shows C2ASR can be well integrated with other self-
supervised learning methods and obtain better performance.

B.3. The computational cost with different previous
task stream interval

As shown in (10), the length of previous task stream in-
terval plays an important role inLtC2ASR, where a large pre-
vious task stream interval brings huge computational cost
and a small previous task stream interval leads to the infor-

Table 3: The computational cost with different previous task stream interval. We report the average accuracy, average
forgetting, training efficiency (the training time per epoch) and GPU memory requirements (the peak memory per GPU) of
C2ASR with different previous task stream interval on Split CIFAR-100. The performances are measured by calculating the
mean and standard deviation across three trials.

Previous task stream interval 1 2 3 4 5

Accuracy (%) 82.36(±0.73) 83.12(±0.92) 83.18(±0.83) 83.20(±0.97) 83.15(±1.06)

Forgetting (%) 2.68(±1.71) 2.22(±1.48) 2.16(±1.38) 2.20(±1.51) 2.18(±1.59)

Training efficiency (s/epoch) 41.4 51.9 62.8 73.4 83.3

GPU memory requirements (MB/GPU) 6271 6828 6842 6859 6888

(a) class-1 (b) class-2 (c) class-3 (d) class-4

(e) class-5 (f) class-6 (g) class-7 (h) class-8

Figure 1: The t-SNE visualization of the pre-trained representations combined with corresponding augmentation stability on
Split CIFAR-10. The color bar on the right corresponds the value of the augmentation stability. Samples which are located
at the boundary of corresponding category distribution usually have lower augmentation stability scores, i.e., red points.
samples within the corresponding category distribution usually have higher augmentation stability scores.

mation leakage problem. In this part, we discuss about the
computational cost with different previous task stream in-
terval to find a appropriate previous task stream interval to
trade off the computational cost and the information leakage
problem.

We report the average accuracy, average forgetting,
training efficiency and GPU memory requirements of pro-
posed C2ASR with different previous task stream interval
on Split CIFAR-100 in Table 3. We choose the training time
per epoch and the peak memory per GPU as the metric of
training efficiency and GPU memory requirements, which
are commonly used to measure the computational cost in
self-supervised learning [1]. Except for the previous task
stream interval, we keep all other settings consistent with
those in 4.1. We report the training efficiency and GPU
memory requirements in a server with an Intel Xeon E5-

2620 v4 and an TITAN Xp (4 workers).
From the Table, we can see C2ASR obtains a consider-

able performance promotion from previous 1 task stream
interval to 2, where the information leakage problem is
solved, but the training time per epoch and the peak mem-
ory per GPU increase 10.5s and 557MB respectively. From
previous 2 task stream interval to 5, C2ASR achieves triv-
ial improvements, but the training time per epoch keeps in-
creasing. In the final implementation, we chose previous 2
task stream interval to trade off the computational cost and
information leakage.

B.4. Visualization

In this part, we give the t-SNE visualization of the pre-
trained representations combined with corresponding aug-
mentation stability on Split CIFAR-10, as shown in Figure

1. We only show the categories in the first four tasks, i.e.,
task 1 (Figure 1(a), 1(b)), task 2 (Figure 1(c), 1(d)), task 3
(Figure 1(e), 1(f)) and task 4 (Figure 1(g), 1(h)), since the
last task doesn’t need to be replayed. We can see that the
samples located in the center of category distribution often
have a large augmentation stability value, while the samples
located in the boundary of category distribution are low.
This phenomenon is common in all tasks, and becomes the
initial motivation of our ASR. The underlying mechanism
is that self-supervised learning can learn semantically infor-
mative representations by encouraging augmentation invari-
ance, even without manual annotations. Thus, this augmen-
tation stability distribution is also encoded into the feature
space by self-supervised models.

References
[1] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-

otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
Advances in Neural Information Processing Systems, pages
9912–9924, Virtual, December 2020. 3

[2] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv:2003.04297, 2020. 2

[3] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
15750–15758, Virtual, June 2021. 2

[4] Enrico Fini, Victor G Turrisi da Costa, Xavier Alameda-
Pineda, Elisa Ricci, Karteek Alahari, and Julien Mairal. Self-
supervised models are continual learners. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9621–9630, Virtual, June 2022. 2

[5] Jean Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doer-
sch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach to
self-supervised learning. In Advances in Neural Information
Processing Systems, pages 21271–21284, Virtual, December
2020. 2

[6] Divyam Madaan, Jaehong Yoon, Yuanchun Li, Yunxin Liu,
and Sung Ju Hwang. Representational continuity for unsu-
pervised continual learning. In Proceedings the International
Conference on Learning Representations, Virtual, April 2022.
2

[7] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Un-
supervised feature learning via non-parametric instance dis-
crimination. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3733–3742, Salt
Lake City, UT, USA, June 2018. 2

[8] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane
Deny. Barlow twins: Self-supervised learning via redundancy
reduction. In Proceedings of the International Conference on
Machine Learning, pages 12310–12320, Virtual, July 2021. 2

