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In this supplementary material, we provide detailed in-
formation about the proposed DNA-Rendering dataset and
the attached benchmarks. We first provide dataset statistics,
hardware design, and data collection protocol in Sec. A.
Then, we discuss the additional information about the anno-
tations, as well as a comparison to other publicly released
toolchains in Sec. B. Moreover, we conduct compact dis-
cussions on the benchmarks by introducing more detailed
settings, additional results, and unfolded comparisons of
benchmark methods’ conceptual differences in Sec. C. We
provide an in-depth discussion on competing datasets and
highlight our comparative contributions to society in Sec. D.
Finally, we discuss our future work in Sec. E.

A. Dataset Details
A.1. Dataset Statistics

DNA-Rendering has a wide distribution over ethnicity,
clothing, actions, and human-object-interaction scenarios.
In this section, we present the detailed data distribution
in key data aspects, namely ethnicity, age, shape, actions,
clothing, and interactive objects.

Ethnicity, Age and Shape. We invite 500 actors with a
uniform distribution of gender and aratioof 4 : 3 : 2 : 1
for Asian, Caucasian, Black, and Hispanic individuals, re-
spectively. The quota has a wide coverage of age and body
shape. We visualize the distribution of actors’ age, height,
and weight in Fig. S1.

Human Actions. DNA-Renderingcovers both normal ac-
tions and professional actions. We maintain a library of
269 human action definitions, including daily-life activi-
ties, simple exercises, and social communication. All nor-
mal performers are asked to select 9 actions from the action
library and perform the picked actions in a free-style man-
ner. There are 153 professional actors among the total 500
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performers. These professional actors are asked to dress
in their special costumes and perform 6 unique professional
actions with skills, including special costume performances,
artistic movements, sports activities, etc.. Note that differ-
ent from the intuitive visualization in Fig. 1', we visualize
fine-grain categories of professional and normal action in
Fig. S2a. These labels are classified in terms of a standard
human activity subcategory definition®. The sunburst chart
of distribution is visualized in the middle, and samples of
specific categories of labels are visualized in the outer word
cloud.

Clothing and Interactive Objects. We create a clothing
repository with 527 items, which covers all 50 clothing
types in DeepFashion [17] while with a random distribu-
tion of color, material, texture, and looseness for each cloth-
ing type. We ask each performer to wear three sets of out-
fits, where one comes from the performer’s self-prepared
outfit (for both special and normal actors), and the other
two are randomly coordinated from our clothing repository.
The distribution of cloth statistical distribution on all ac-
tion sequences and samples of cloth labels is illustrated in
Fig. S2b.

A.2. Meta Attributes

We have designed an attribute system for each dimen-
sion of the collected data, including basic information about
the actors, clothing, and action information for each action
sequence. Fig. S3 shows an example of meta attribute in-
formation of an action sequence for a professional actor.
In terms of actor information, we record the actor’s name,
gender, ethnicity, age, height, and weight. For clothing in-
formation, we describe the upper and lower clothing, and

'If not specified, the indexes with only Arabic numeral refer to the
corresponding sections/figures/tables listed in the main paper.
Zhttps://en.wikipedia.org/wiki/Wikipedia:Contents/Human _activities
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Figure S1: The distribution of actors’ attributes. We record the age, height, and weight of our invited actors. The statistical results

reﬂect the wide range of the actors’ personal attributes.
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Figure S2: Illustration of the action and clothes label distribution. (a). The distribution of action categories and sub-categories is
visualized by a sunburst chart in the middle which is surrounded by the word cloud of normal and professional action labels. (b). The
distribution of clothes categories and labels are visualized in the same form with (a).

shoe information. These descriptions include information
on color, type, and other significant visual features. For
action information, we describe the overall content of the
action and, if there are any interactive objects, we also de-
scribe the type and other significant visual features of those
objects.

A.3. Hardware Construction

The main structure of DNA-Rendering’s capture system
is a dome with a radius of three meters. The camera ar-
ray built upon the doom consists of multiple types of cam-
eras — ultra-high-resolution 12MP cameras, 5SMP industrial
cameras, and Azure Kinect cameras. The lighting sys-
tem provides natural lighting conditions. All cameras are
triggered and synchronized by hardware, and synchronized
multi-view data are transferred and recorded through our
data streaming system.

Camera System. DNA-Rendering has 68 cameras, includ-
ing 12 ultra-high resolution cameras with 12MP resolution
(short for 4096 x 3000 resolution), 48 industrial cameras at
5MP resolution (i.e., 2448 x 2048 resolution), and 8 RGB-D
Kinect cameras with depth resolution of 576 x 640. Specif-
ically, the 5MP cameras are mounted on three cycles on the
dome skeleton with 1, 2, and 3 meters in height, each circle

in height has 16 balanced 5MP cameras with 22.5° angle in-
terval. 12MP cameras are placed uniformly on another two
intermediate height level circles, 1.5 and 2.5 meters height
respectively. 12MP cameras are installed with a 60° angle

Basic Information
ID: 0121_02 Gender: Female
Ethnicity: Asian  Age: 52
Height: 166cm  Weight: 48kg

Clothes Labels
Top: A yellow Shaoxing Opera
Xiaosheng slanted collar costume
Pants: -

Shoes: Theatrical shoes
Accessory: A black Chinese opera hat

Action Labels

Description: Sigh in the garden in
the form of Shaoxing Opera

Interactive Objects: A folding fan

Figure S3: An example of our meta attribute system. We record
the actors’ basic information, costumes, and actions.



interval and interlaced with 5MP cameras. The Kinect cam-
eras are mounted close to the middle level of 5SMP cameras,
providing the best RGB texture references for depth maps.
Such construction of the camera array achieves dense cover-
age of the human body at multiple heights and angles. 5SMP
cameras and 12MP cameras are equipped with lenses of 8
mm and 6 mm respectively to achieve the best trade-off be-
tween full body proportion-in-view and size of capture vol-
ume. Note that, we use data captured from 12MP and 5MP
cameras to construct our rendering dataset. The data cap-
tured from depth cameras comprise the auxiliary data which
provide coarse geometry of human. Noted that we abandon
the Kinect RGB cameras during the entire process, due to
the bad color consistency.

Lighting System. Our lighting system consists of 16 flat
light sources with a color temperature of 5600K £+ 300K
and an illuminance of 4500 Lux/m. The lighting scale of
each light source is 700 x 500 mm. There are eight flat
lights on the ground installed with a 45° tilt towards actors
in the middle to provide the best lighting on actors. There
are extra eight flat lights hung on the roof to strengthen the
lighting of upper body parts, especially for human heads.
These uniformly distributed flat lights irradiate the whole
scene with strong, natural, and balanced illumination.
Data Streaming. To collect, transfer and store the multi-
view camera data, we construct a data streaming system that
consists of two pieces of equipment for data synchroniza-
tion — a 10 Giga-byte network, and a high data through-
put workstation. The camera system is synchronized by
Kinect’s trigger signal. First, eight Kinects are configured
in a daisy chain and the out-trigger signal is converted to the
TTL signal, and the other 60 cameras are triggered by syn-
chronization equipment. The 5MP cameras are connected
to six workstations via USB-3.0 ports and four-channel
USB cards with PCI-E interfaces. The 12MP cameras are
connected to the other three workstations via 10 GigE net-
works, capture cards, and PCI-E interfaces. To reduce ac-
tive light interference of Kinect depth cameras, we adopt a
160 ps time delay for each slave device on the chain. The
maximum synchronization error of Kinect is 1.12 ms in the-
ory. The maximum synchronization error among all indus-
trial cameras is less than 2 ms, we measure this error by
utilizing the image of high-speed flashing LED timer arrays
and computing the displayed time differences.

A.4. Data Collection Protocol

We discuss the detailed data collection protocol from five
aspects, i.e., data content, system check, core data collec-
tion, auxiliary data collection, and post-processing.

Data Content. During everyday data collection, we gather
a comprehensive set of data sources, including action data,
background data, actors’ A-pose data for each outfit, ex-
trinsic calibration data, and the record of performance at-

tributes. We collect intrinsic data and color calibration data
only when we apply any modification to the system.

System Check. We conduct a daily system check before
formal data collection. The process focuses on the verifica-
tion of camera parameters and synchronization. Concretely,
we will check 1) if the camera parameters remain the same
with recorded optimal values (e.g., white balance, gamma,
focal length, the valid field of view (FOV), efc.). Checking
these factors ensures capturing under excellent image qual-
ity and valid capture volume. 2) We monitor the network’s
condition and check the synchronization via a system probe
using high-speed flashing LEDs. 3) Finally, we collect ex-
trinsic camera calibration data via a standard data collection
process that records the checkerboard rotating as described
in Sec. 3.3 in the main paper.

Core Data Collection. We invite 4-6 actors per day to per-
form actions in our studio in different appointed time slots.
Once the actors arrive, we will briefly introduce the collec-
tion procedure and ask them to sign the authorization agree-
ments first. If the actors agree, they are asked to prepare
their outfits, makeup, and actions. Meanwhile, we record
the basic information for each actor, including the height,
weight, age, ethnicity, and other appearance attributes like
the type, color, and material of his/her self-prepared outfit.
After the preparation, we ask each actor to perform several
actions in his/her self-prepared outfit. Specifically, a normal
actor will pick at least three actions from our pre-defined
daily activities and perform them in a free-style manner. A
professional actor will wear a special outfit and perform at
least six unique sets of footage that fit with the professional
skill or costume. Then, we ask each actor to change his/her
outfits with another two sets that are randomly coordinated
from our clothing library. For each new outfit, the actor will
perform another three different normal actions. To ensure
the performed motion is rational and authentic enough, we
will ask each performer to rehearse outside the studio be-
fore the formal shooting. After our staff confirms that the
action is performed correctly, the actor will perform in the
studio again for the formal data collection.

Auxiliary Data Collection. Aside from the core perfor-
mance data collection, we also record auxiliary data, includ-
ing the blank background data for the matting process, and
A-pose data as a record for the canonical actor model be-
fore each round of new outfit recording. To record A-pose
data, we require 1) the actor’s hands tilt 45°downward the
legs with clear distance; 2) the hands should slightly open
without clenched fingers or put them together; 3) the far-
cical expression should keep expressionless with the eyes
open and looking straight ahead.

Post-processing. After the action is completed, the center
workstation generates fast multi-view preview videos for
all cameras, and we check whether the performance con-
tent or the filming on each camera view meets the require-



ment. Actors are asked to re-play the performance if the
recorded data is invalid. After collecting all qualified data,
we post-process the data in per-day shooting volume Image
sequences in RAW format will be converted to the lossless
BMP format, and then compressed into a video with a low
constant rate factor with the x264 library. The processed
data are then uploaded to the cloud server for subsequent
dataset processing.

A.S5. Limitations on Data Collection

Data Content. To achieve high-fidelity data collection, we
set the lighting with invariant and uniform illumination and
set the acquisition frame rate to 15 frames per second. We
also constrain the field of view of the cameras, to ensure
each one can capture the full-body movements of a single
actor (including the interacted object if there is one) while
maintaining the FOV as max as possible. This allows us to
capture details such as facial makeup and clothing textures.
In future work, we would update our hardware systems and
upgrade our capture processes to accommodate different
lighting conditions, multiple FOV ranges for multi-person
scenes, high-speed capture of subtle movements, and multi-
sensory (e.g., auditory, and tactile data) collection.

Failure Cases. During the data collection process, various
factors can lead to failure, such as large movements that ex-
ceed the field of view of the multi-camera system, or loss of
frames due to large volume data transmission fluctuations.
Following the standardized capture process, our operators
will manually inspect the completeness and effectiveness of
all camera data and actor movements after each capture cy-
cle. If any issues are found, the hardware will be instantly
checked and the data will be re-captured. Most failure cases
are identified and promptly resolved at this stage.

B. Data Annotation Details
B.1. Camera Intrinsic Calibration

As this project targets capturing high-fidelity whole-body
data, we adopt a long lens that enlarges the human propor-
tion in the camera view. This setup requires a high-quality
estimation of camera distortion since some subjects’ body
parts might appear on the image boundary region. Thus, we
use a 3 x 3 Soduku data collection protocol for intrinsic cal-
ibration, as illustrated in Fig. S4. Specifically, to maximize
the checkboards’ coverage across the whole image space,
we separate the image into a 3 x 3 Soduku and capture the
images of the checkerboards’ movement in grids. For each
grid, we rotate the checkerboard in pitch, row, and yaw di-
rection to enlarge the angle of the boards.

B.2. Camera Color Calibration

To ensure color consistency across multiple cameras, we
inject a color calibration process into our data collection.

(©

Figure S4: Intrinsic calibration. To ensure better distortion co-
efficient estimation, (a) we separate the camera view into 3 X 3
Soduku and capture the images of a checkerboard (about 1/4 size
of the one used in estimating extrinsic parameters) in every So-
duku grid. (b) For each grid, we rotate the checkerboard at pitch,
row, and yaw angles. This calibration step forces the checker to
appear in every corner of the camera view. (¢) Zoom-in for small-
size checkboard for intrinsic calibration.

A standard color board could be used as the criterion for
f color calibration, and the fixed lighting condition in the
dome could be treated as a standard condition during cali-
bration. Specifically, the calibration lies in two aspects: 1)
Hardware parameter adjustment. We make a rough adjust-
ment on the hardware parameters to make the white balance
and color balance of each camera as consistent as possible
by human eyes; 2) Fine adjustment. Under a standard light
source, we make the standard color board face straightfor-
wardly to the camera to be calibrated at a constant distance,
and a single image under this setting is collected; the cor-
ner detection algorithm is used to automatically identify the
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Figure S5: Color calibration pipeline and calibrated color re-
sponse.The color-calibrated images are listed on the right of the
flow chart (at the top of the figure). The color responses of two
calibrated cameras (Camera 25 is 5 MP, and Camera 51 is 12MP)
compared with groundtruth color value of the color checkerboard
are plotted below the flow chart, and smoothed spline curve is
used. We show the ‘Raw responses’ after hardware setting adjust-
ment for reference. With the help of the color correction process,
the average RGB value consistency between these two cameras
AFEy [21] is improved from 37.79 to 4.15.
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Figure S6: Evaluation of keypoint quality from every camera view. We compute the mean reprojection error of 3D keypoints with
2D detection results. Optimization effectively reduces the error to below 30 pixels. Note that camera IDs 0-47 are 5SMP cameras, and

camera IDs 48-59 are 12MP cameras, high-lighted with red x-ticks.

position of the color board in the image, and the color sam-
pling is performed with the center radius p = 10 pixels of
each color square. The average color value is taken as the
color sampling value. We carry out the polynomial projec-
tion of the color sampling value to the standard value via
least squares. Note that, we calibrate in RGB form and take
n = 2 to prevent overfitting. The overall procedure and
illustrated results are presented in Fig. S5.

B.3. Keypoints

We highlight that having a large number of camera views
allows us to rectify the occasional failures of single-view
2D keypoint detection. For the more natural and stable
3D keypoints, we adopt the following optimization and
post-processing strategies: 1) Keypoint selection. We dy-
namically select views for each keypoint in the data se-
quence, which with the most confident score to the key-
point while ensuring the keypoint can be triangulated. 2)
Bone length constraint. The bone length is constrained with
a fixed length. We use the median bone length after ini-
tial triangulation as the target in the optimization. Only the
lengths of the main limbs are considered in this step. 3) Out-
lier removal. As a post-processing pipeline, filter modules
are designed based on human priors, including a 3D bound-
ing box filter, a movement filter, and a relative position fil-
ter. 3D keypoints outliers, which are too far from the body
trunk, move too fast between frames, or lead to an incon-
sistent relative position between frames are removed. An
interpolation is applied to recover the missing keypoints.
Such a post-processing scheme can assure reliable and con-
sistent face and hand keypoints, even with large-scale oc-
clusions. As shown in Fig. S6, these optimization and post-
processing strategies effectively reduce reprojection error
compared to triangulation with all available 2D keypoints.

B.4. Parametric Model

In our automatic parametric model annotation pipeline,
body shape 3 € R"*19 (or B € R™*!! for children [8, 25])
is first estimated based on the bone length calculated from
3D keypoints with the static and less challenging A-pose

sequence. We use the estimated body shape parameters as
initial values and optimize the full parametric model param-
eters including pose parameters (body pose, hand pose, and
global orientation) § € R™*!56 and translation parame-
ters t € R™*3 (n is the number of frames) via a modified
SMPLIify-X for other sequences with dynamic poses. The
main energy terms in the optimization are keypoint energy
Ep, full-body joint angle prior energy E,, bone length en-
ergy I', and body shape prior energy Eg [26, 20, 1]. The
main modification of SMPLify-X in our annotation pipeline
is the decoupling body shape optimization and pose opti-
mization, which we empirically find to produce more stable
results.

Concretely, we employ bone length energy Ez and body
shape prior energy Fg to fine-tune body shape parameters
for each sequence of a subject, with the same shape initial-
ization from the A-pose static sequence. Body shape values
are kept consistent throughout all the frames in a sequence.

Eshape(aa 67t) = )\1EB + )\ZEB

We then leverage keypoint energy Ep and full-body
joint angle prior energy E, for pose optimization with body
shape fixed.

(Sh

Epose(ea 6; t) = )\SEP + )\4Ea (SZ)

As shown in Fig. S7, we evaluate the fitting error
between 3D keypoints and corresponding regressed SM-
PLX joints. Body-only keypoints, hand-only keypoints,
and all keypoints are evaluated separately. With our multi-
view capture system and annotation pipeline, the MPJPE of
body-only keypoints is on par with the optical motion cap-
ture system in Human3.6M [9, 19], MPJPE of hand-only
keypoints is 15.87mm.

B.5. Comparison to Other SMPLX Fitting Methods

Baselines. To analyze the effectiveness of the proposed
SMPLX fitting pipeline, we evaluate the accuracy of SM-
PLX fitting and compare it with three publicly available
pipelines, i.e., the baseline MultiviewSMPLifyX [39, 26],



2D Reprojection Error (pixel) 3D MPJPE (mm) .
Methods Body pHaJnd Face vaerall Body Hand Face Overall Run Time (s)
MultiviewSMPLIifyX [39] 4227 3336 2391 28.77 5546 2325 2224 27.54 81.33
BodyFitting (GeneBody) [3] 45.68 3343 34.17 35.67 4237 32.19 30.67 32.89 29.50
EasyMoCap (ZJU-MoCap) [4] || 32.71 33.75 32.72 33.64 36.04 2537 38.10 33.96 0.69
Ours 29.63 3141 19.08 24.08 30.20 15.87 16.46 17.52 3.23

Table S1: Comparison among multi-view SMPLX fitting methods. Cell color

indicates the best, second best, and third best

performance, respectively. Runtime in seconds indicates the average time required for the fitting process for one multi-view frame.
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Figure S7: Evaluation of parametric model registration qual-
ity. We evaluate body-only keypoints, hand-only keypoints, and
all keypoints separately. The orange line indicates the median
value, the box indicates the lower to the higher quartile, and the
whiskers indicate the range of data.

EasyMoCap [4, 30] used in ZJU-MoCap [28, 30] dataset,
and BodyFitting used in GeneBody [3] dataset. Specifi-
cally, MultiviewSMPLIify [39] and BodyFitting [3] directly
optimize the error of reprojected 3D SMPLX keypoints to
2D detections. Such a naive strategy is straightforward but
lacks outlier robustness (might stuck in absolutely wrong
detections or detection flip between left and right), and it
is also computationally expensive. On the contrary, both
EasyMoCap and the proposed pipeline adopt another strat-
egy that separates the SMPLify process by a triangulation
process. This strategy optimizes 3D keypoints from 2D de-
tection and then fits SMPLX from directly on optimized
3D keypoints. As robust designs could be adapted during
the triangulation process to eject outliers caused by flipping
or occlusion, such a two-step strategy is faster and more
robust to outliers. Whereas, one drawback is that the final
SMPLX totally rely on the results of triangulation in the first
stage by hand-crafted optimization and filtering. Compared
to EasyMoCap, incorporate a more sophisticated designed
2D keypoints postprocessing phase, where movement filter-
ing and relative position filtering are used when the given
2D keypoints are not accurate.

Settings. For fairness, we use the same 2D keypoints con-
sisting of human-inspected body labels and hands and faces
auto-detection results. We also force all SMPLX models
to have 10 facial expression coefficiency and 45 hand PCA
components. We run the SMPLX fitting on our benchmark
test data with their default SMPLX setting, namely with de-
fault penalty energies, their coefficient, and other settings
except for the aforementioned modifications. We quantita-
tively evaluate the MPJPE of 3D keypoints and the repro-
jected 2D error across all views.

Results. The quantitive results are listed in Tab. S1, we

also separately evaluate the accuracy on body, hand, face,
and whole body. 3D MPIJPE is computed by regressed
SMPLX 3D keypoints to human-inspected 3D keypoints.
2D reprojection error is compared by reprojected SM-
PLX 3D keypoint to input 2D keypoints. The runtime per-
formances are also recorded, indicating the average fitting
time usage (excluding other time namely, data IO, efc.)
for one multi-view frame. Our proposed pipeline outper-
forms other fitting methods in all categories in terms of
both 2D and 3D metrics, and has a more acceptable run-
time requirement than EasyMocap [4]. Moreover, Mul-
tiviewSMPLIfy [39, 26] achieves the second-best perfor-
mance, while its time consumption is exploded by an order
of magnitude. In a nutshell, our pipeline ensures the best
trade-off between performance and efficiency.

B.6. Matting and Segmentation Refine

As described in the main text, despite the state-of-the-art
background matting method [ 1 6] achieving impressive mat-
ting performance in the majority of our data, there are still
several corner cases that fail to extract the foreground cor-
rectly, e.g., noisy backgrounds, broken bodies, and missing
bodies and objects. We demonstrate these most common
corner cases in Fig. S8. To further improve the matting
quality, we adopt the traditional computer vision algorithm-
GraphCut [6] to refine the predicted masks, and we find
such a classical method plays a good fit to the CNN-based
method which generates good results on these failure cases.

In order to quantify the improvement, we introduce a
manual inspection process to grade the results generated by
CNN-based method [16] only and by a subsequent refine-
ment procedure. Noted that due to the large scale of data,
generating masks with manual labeling is impractical. More
specifically, we ask three annotators to conduct such grad-
ing surveys on 500 random multiview sequences. We report
the error rates in terms of the type of corner cases in the bar
chart in Fig. S8. From the human grading probe, we can
conclude that with our proposed hybrid strategy, the error
rates in all category decrease by a large margin compared
with [16] only, with the overall error rate reduced from
11% to 2%.

B.7. Quality Control of Auto Annotation Results

To ensure the quality of annotation data, we con-
duct manual quality checks on the auto-annotated results.
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Figure S8: Examples and statistics on matting refinement. In
the upper image, we show three kinds of common challenging
cases and the comparisons among color filtering only, background
matting only, and our optimized solution (Refined Matting). From
top to bottom cases, the problems (before optimization) are noisy
backgrounds, broken body areas, and missing areas like body parts
and incomplete objects; In the bottom figure, we show the error
rates from the sampling survey of the three categories.

Specifically, we perform a human-in-the-loop quality eval-
uation for the SMPLX and matting results generated by the
annotation pipeline.

For SMPLX quality control, we overlay each SMPLX re-
sult on the original action data to create a multi-view video
and manually verify the quality with the labeling task that
requires our human annotator to grade the SMPLX qual-
ity. We subdivide the process into three stages. 1) Binary
filtering. If the SMPLX human body completely overlaps

with the human body in the image or is within the natural
shape range of the human body throughout the entire video,
it is considered as a qualified SMPLX annotation; other-
wise, if there is severe misalignment or distortions on the
main body, it is considered as an unqualified one. 2) Quality
Grading. For qualified data cases, we further evaluate their
subdivision quality, dividing them into five scores based on
the unnaturalness of fingers or faces, the alignment of the
head and shoulders with the image, efc. 3) Keypoints re-
annotation. For unqualified cases, we ask the annotators to
re-annotate the main skeleton in views with large errors by
auto-annotators. The new annotation results are used to re-
run the SMPLX results. We repeat the whole process until
we achieve valid SMPLX models in all cases.

For matting quality control, we manually evaluate the
quality of the annotated video after matting by grading each
video’s quality. Quality is divided into three levels: A-level,
where the entire human body is fully displayed without oc-
clusion, and any interactive objects are fully shown, with
no excess areas; B-level, where a small part of the human
body or object is missing, or there are a few extra cutouts,
with the erroneous pixel area not exceeding one-third of the
human body area; and C-level, where there are serious prob-
lems and the erroneous pixel area exceeds one-third of the
effective human body area. We treat A-level and B-level as
acceptable mask annotations, while C-level as failure anno-
tations. Noted that the cases in training and testing data split
in our benchmark were manually selected to ensure high-
quality annotations. For the sake of rigor, we will release
the mask rating as confidence for mask annotation.

C. Benchmark Details
C.1. Methods Overview and Modifications

In this subsection, we review the state-of-the-art methods
benchmarked in this paper, and describe the major modifi-
cation we made to the default implementation for adapting
to the proposed dataset.

C.1.1 Static Methods

For static methods, we target to anchor the performances
of novel view rendering on static test frames, which could
be used as the baseline reference for dynamic methods on
certain frozen times.

Instant-NGP [24] as an alter of NeRF [23], which utilizes
the multi-resolution hash embedding and smaller network
to accelerate the training and evaluation cost without loss
of quality. Given the original implementation of Instant-
NGP is under the underlying assumption of a moving sin-
gle camera input or cameras sharing the intrinsic parame-
ter across all camera positions, we modify it to suit multi-
camera data with different intrinsic parameters.



NeuS [34] is a hybrid representation that combines neu-
ral radiance field with neural SDF, which produces bet-
ter 3D reconstruction ability than NeRF-based methods [7,

, 28] on existing datasets, while the rendered images of
NeuS are typically not as sharp as NeRF-based methods.
When adapting NeuS [34] on the proposed dataset, no spe-
cial modification is required.

C.1.2 Dynamic Methods

To construct the novel view synthesis and novel pose anima-
tion benchmark, we select the most recent state-of-the-art
dynamic neural human rendering methods which can learn
a neural body avatar from video sequences.
NeuralVolumes [18] formulates a category-agnostic dy-
namic scene by a canonical voxel-grid decoder, and mod-
els the per-frame deformation as a mixture of affine warps
that are parameterized by an auto-encoder with image input.
Due to this property, we feed the network with 4 balanced
views of images from the training views. We also center
and scale the camera system by 0.3 to fit the voxel-grid sys-
tem. During testing on novel pose, novel pose images of the
4 view are input to the auto-encoder.

A-NeRF [31] learns a human NeRF by conditioning the
field with coordinates in each bone’s local system. Note that
its default setting only trains the network in the foreground,
which usually leads to artifacts on the floor, we improve this
by forcing pixel sampling on non-foreground space which
helps to reduce the artifacts.

NeuralBody [28] conditions a dynamic NeRF by time
codes as well as structural latent features by sparsely con-
volving parametric model’s vertices in 3D. To run Neural-
Body [28], we transform our standard definition of the para-
metric model to EasyMoCap [4] style, and we train the net-
work using 42 dense views. Note that during novel pose
estimation, we fed the network with novel pose SMPLs and
linearly extrapolate the time step.

AnimatableNeRF [27] introduces neural blend weights
with 3D human skeletons to generate observation-canonical
correspondences in dynamic human NeRF. We do the same
transformation like NeuralBody [28].

HumanNeRF [36] learns a dynamic neural human model
from monocular video. It decouples the motion field by a
corrected skeleton movement and non-rigid motion. Differ-
ent from its original setting, we train the model with dense
views by stacking multiview video sequences. It is impor-
tant to point out that HumanNeRF [36] models may col-
lapse on certain data sequences producing meaningless im-
ages like the left bottom case in Fig. 6. Such a phenomenon
is consistent even with multiple trials of random initializa-
tion. Considering to deliver a more straightforward metric
meaning in the benchmark, the report numbers of Human-
NeRF in Tab. S2 and Tab. 2 only include the valid models.

C.1.3 Generalizable Methods

For novel identity generalization, we evaluate three
category-agnostic methods [37, 35, 15] and two methods
with human structure priors [13, 22].

PixelNeRF [37] is one of the first generalizable NeRFs that
generalize novel objects’ color and opacity by pixel-aligned
feature-conditioned NeRF. We train it on our dataset with
4 selected views and fuse the multiview image feature with
average pooling.

IBRNet [35] predicts the radiance color of novel objects by
blending observed color from source views, and inference
the opacity from multiview feature fusion.

VisionNeRF [15] upgrades PixelNeRF’s [37] image en-
coder with a global transformer [33] and fuse the multi-level
features with 2D CNN features. Like PixelNeRF [37], we
fuse the multiview feature with average pooling.
NeuralHumanPerformer [13] combines key components
of PixelNeRF [37] and NeuralBody [28], and fuse them
with multiview transformer and predict the radiance of hu-
man body. Noted there is a slight contradiction between
the technical paper and the released implementation on the
window size of the temporal transformer. We follow the
open-sourced implementation and set the window size to
1 to avoid memory explosion which means the temporal
transformer is a dummy module.

KeypointNeRF [22] use IBRNet [35] as the backbone, and
tailors 3D keypoints as human prior into the framework. It
conditions the radiance field with relative depth to every
3D keypoint in each source camera coordinate. We train
the network with 24 SMPL main skeleton keypoints. Noted
that different from other generalizable methods which allow
arbitrary resolution rendering, KeypointNeRF [22] is suited
to render square-sized images with 2" width and height. We
render out a minimum squared image that can cover the de-
sired resolution then crop out the valid part.

C.2. Benchmark Details

As a supplement to the benchmark part in the main paper,
we describe the detailed benchmark settings and additional
analysis of results.

C.2.1 Novel View Synthesis

Detailed Settings. As we described the task in Sec. 4.2
and reviewed the methods in Sec. C.1, we evaluate the dy-
namic methods’ novel view synthesis ability on the bench-
mark test set, which consists of 13 splits with 39 perfor-
mance sequences. During training, we train models on each
sequence separately, with the 42 multiview (training views)
image sequences of the first 80% frames. Evaluations are
performed on the same seen human poses but with every 45
frame skip and only calculated on 18 unseen camera poses.
For static methods, we train separate models on multi-view



images of each single frame. To evaluate the high-fidelity
rendering of these benchmark methods, we train and test the
models on half of the origin resolution, namely 1024 x 1224
and 1500 x 2048 for SMP and 12MP images respectively.

Detailed Results. As a supplement to the result analysis in
the main text, we present more detailed results and analy-
sis in this subsection. Detailed quantitative results across
our testing splits are listed in Tab. S2, which correspond to
the bubble charts in Fig. 4. We also illustrate the qualita-
tive results in Fig. S9. From the ranking in Tab. S2, we
can observe that A-NeRF [31], NeuralBody [28] and Hu-
manNeRF [36] achieve the best numbers in most of the
test splits in terms of PSNR, SSIM and LPIPS [38]. As
the module designs of these methods might play vital roles
in such distinct results, we further analyze the phenomenon
by unfolding their conceptual differences as follows: Neu-
ralVolumes [18] adopts a VAE [12]-style neural rendering
framework that encodes and decodes both the affinity trans-
formation field and rendering volume from sparse view ref-
erences. Such a paradigm absorbs the strength of VAE that
compresses input multi-view features into one compact la-
tent representation space, which follows the Gaussian as-
sumption. Thus it could generalize well on novel views
(achieving top-three performance in PSNR) with acceptable
rendering quality. Whereas, such a framework also inherits
the smooth problem of VAE that leads to not sharp enough
qualitative results. A-NeRF [31]is a conditioned NeRF that
utilizes local joint ordinate information of query points. It
samples a small box center at a random point in the fore-
ground and adds a proportion of background points to reg-
ularize the empty space, using only mean square error loss
(MSE). This strategy enforces the network to encode the
dynamic NeRF with local bone coordinates, which is effi-
cient in the human foreground region. The overall novel
view synthesis ability of A-NeRF [31] is appealing, espe-
cially in PSNR. However, due to the sparsity characteris-
tic of skeleton representation, A-NeRF tends to generate

dilated artifacts (see Motion-Medium and Motion-Hard in
Fig. S9), more obvious with novel pose in off-body parts of
Interaction-Hard case in Fig. S10. NeuralBody [28] and
AnimatableNeRF [27] first compute a 3D bounding box
from SMPL, then train/infer on the reprojected 3D box re-
gion and fill the outer region with the background color.
Thus, their SSIM scores are typically greater than other
methods that infer the whole image. Whereas, the bound-
ing box only helps the network consider the main body
and ignore the object, which leads to both methods can
not reconstruct large interacting objects (as illustrated in
the sword part of Interaction-Medium case in Fig. S9) Hu-
manNeRF [36] combines the strength of previous methods’
design, it samples squared boxes on reprojected 3D bound-
ing box, and trained model with a perceptual [10] loss and
MSE loss. This results in best LPIPS performance, as
well as the best visual performance with sharp texture in
qualitative results. However, as HumanNeRF [36] designs
a human motion prior that is Gaussian distribution along
body parts or bones. This prior may lead to training fail-
ure on loose clothing and interactive objects, as illustrated
in the Deformation-Hard and Interaction-Medium cases in
Fig. S10.

C.2.2 Novel Pose Animation

Detailed Settings. We conduct novel pose experiments on
dynamic methods on the same models in novel view syn-
thesis. Specifically, by training on the first 80% frames of
each case, we test the animatable model with input of the
pose sequences extracted from the last 20% frames with a
15-frame skip. Depending on the pose-condition scheme of
different methods, the test input can be divided into two cat-
egories, the SMPL parameters and the image features. We
use the same testing view and rendering resolution as the
novel view synthesis experiment.

Detailed Results. We present the detailed novel pose ani-

Splits ‘ PSNRT ‘ SSIMT ‘ LPIPS*|

NGP NS | NV AN NB AN HN |[NGP NS | NV AN NB AnN HN [NGP NS | NV AN NB AN HN
Motion-Simple 3097 2749 ' 2785 29.15 27.84 2589 2549 | 0979 0973 ' 0.966 0974 | 0978 0974 0955 | 3152 44.18 ' 57.74 | 52.75 5332 56.10 6208
Motion-Medium 3140 30.04 | 2816 29.07 2747 2493 24.80 | 0980 0980, 0.970 0975 0981 0971 0966 | 25.12 3133, 5003 4528 48.12 5643 | 33.66
Motion-Hard 2905 2849 1 2610 27.55 25.16 24.54 2293 | 0972 0.976 1 0959 0967 0976 0976 0964 | 4135 40.13 1 77.54 69.75 7125 63.35 5342

Deformation-Simple | 31.63  28.01 | 28.09 = 29.63 28.18 2742 2830 | 0.981 0.972, 0.968 0.975 0976 0975 0974 | 29.02 42.62 | 48.17 41.68 48.18 4544 23.70
Deformation-Medium | 30.01 29.65 1 29.77  30.52 29.22 2629 26.60 | 0972 0.975 1 0971 0.974 0979 0972 0.963 | 41.14 37.18 1 39.36 4351 4695 52.69 29.12
Deformation-Hard 29.79  30.80 : 27.19 2811 2477 21.93 2148 | 0967 0973 ! 0954 0957 = 0.969 0958 0.934 | 46.09 44.83 : 70.04 70.16 81.14 8459 83.36

Texture-Simple 30.53 31.39 1 27.85 3045 29.13 2536 27.39 | 0.978 0.983 1 0.974 0.984 0.988 0979 0979 | 36.02 23.53 1 58.78 43.09 4153 53.69 2472
Texture-Medium 30.85 31.33 : 28.50 © 30.53 29.62 2246 27.40 | 0978 0.982 : 0968 0.977 0984 0959 0971 | 29.32 27.04 : 4733 3799 4146 75.08 25.01
Texture-Hard 29.16 2823 | 2673 2736 2569 19.98 2478 | 0.966 0.956 | 0.942 0947 0.963 0946 0.950 | 36.48 5855 79.68 79.17 7736 94.60 34.66
Interaction-No 3131 3190 ' 29.05 2871 27.77 2382 2677 [ 0978 098570972 0975 0984 0971 0971 | 3400 23.65 ' 50.36 56.07 49.79 67.40 = 30.00

Interaction-Simple 31.55 32131 29.09  30.12 2956 25.93 2859 | 0.982 0.987 , 0.976 0.981 0.987 0977 0978 | 27.58 21.79 | 45.55 4648 41.69 57.18 22.00
Interaction-Medium 28.82 27.15 : 25.59 © 25.72 25.65 22.02 23.51 | 0.967 0.968 : 0955 0.956 0975 0997 0.953 | 43.33 52.52 : 73.05 8550 68.03 9290 54.39
Interaction-Hard 30.03 29.29 | 28.09 2825 25.00 2292 2387|0972 0977 , 0962 0.964 0972 0961 0.951 | 43.64 39.71 | 57.97 6342 71.00 8149 57.38

Overall 3039 29.68 | 27.85 28.86 2731 24.11 2553 | 0975 0.976 ' 0.964 0970 0.978 0970 0.962 | 3574 3747 ' 58.12 56.53 5691 67.76 41.04

Table S2: Benchmark results on novel view synthesis task. State-of-the-art methods’ performance of novel test views on seen poses in
each benchmark split. We abbreviate Instant-NGP [24] as ‘NGP’, NeuS [34] as ‘NS’, A-NeRF [31] as ‘AN’, Neural Volumes [ 18] as ‘NV’,

NeuralBodyas ‘NB’ [28], AnimatableNeRF [27] as ‘AnN’, and HumanNeRF [36] as ‘HN’. Cell color

indicate the best, second

best, and third best performance in the same split respectively. We exclude the static methods NGP and NS during ranking and separate

them with dash lines.
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Figure S9: Novel view synthesis results on each data split. From top to bottom, we illustrate the rendering results generated by (a-e).

NeuralVolumes [ 18], A-NeRF [31], NeuralBody [28], AnimatableNeRF [27], HumanNeRF [36]. Please zoom in for better visualization.
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Figure S10: Novel pose animation results on each data split. From top to bottom, we illustrate the reposing results generated by

(a-e): NeuralVolumes [18], A-NeRF [31], NeuralBody [28] AnimatableNeRF [27], and HumanNeRF [36]. Please zoom in for better

visualization.
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mation results on 13 testing splits in Tab. 2 of the main pa-
per, and show the qualitative samples of results in Fig. S10
in this subsection. Similar to novel view synthesis task, A-
NeRF [31] achieves the best PSNR performance, Neural-
Body [28] has the best SSIM score, and HumanNeRF [36]
gets the best LPIPS [38]. Differently, Neural Volumes [18]’s
performance decrease by a large margin, especially in Mo-
tion splits. One of the underlying reasons is that the affinity
field learning in the NeuralVolumes [ 8] only relies on the
latent code that is learned from multiview images and reg-
ularized by KL-divergence. Such a methodology is tied in
a global warping manner, which might be relatively less af-
fected by factors like global deformation in distance within
a short movement change, but is vulnerable to unseen local
motion (e.g., wrong head pose of Interaction-Medium case
in Fig. S10, and strained border of actor’s shirt in Texture-
Easy case in Fig. S10 ). Moreover, the design cannot pre-
serve global scale in unseen poses, due to the wrong predic-
tion of global affine transform sometimes (e.g., the zoom
scale of the actor in Texture-Easy case in Fig. S10). The
methods [31, 28, 27, 36] with the explicit human pose in-
formation as input can typically generate reasonable anima-
tion results in terms of the local first motion, as shown in
Fig. S10. Whereas, we draw the other major conclusion
that current methods fail to model Deformation and Inter-
action properly. The typical examples shown in Fig. S10

GT IBRNet

Figure S11: Novel ID synthesis results on each data split. Splits with hard difficulty are visualized to illustrate the robustness of
generalizable methods on hard cases.

VisionNeRF KeypointNeRF

are the loose cloth case of Deformation-Hard, and the inter-
active objects in Interaction-Medium and Interaction-Hard
cases. How to properly model non-rig or out-of-body mo-
tions while preserving the advantages from explicit body
representations is worth great pondering.

C.2.3 Novel Identity Rendering

Detailed Settings. For novel identity synthesis, we review
five state-of-the-art methods [37, 35, 22, 5, 13], and de-
scribed their modification in Sec. C.1.3. The testing set is
the same 39 testing sequences in the novel view and the
novel pose benchmark. The training set consists of 400
sequences with full coverage of all categories and diffi-
culties. We select four balanced views as source views.
These source view images are cropped and resized into
512 x 512 resolution (same with the official implementation
in [22, 3, 13]). For category-agnostic methods [37, 35, 15],
we only provide segmentation and camera parameters dur-
ing training and testing. For methods with human prior, we
also input the fitted SMPLX or 3D keypoints. We train mod-
els on the full 60 views in the training identity sequences.
For inference, we evaluate the unseen identities on the same
18 test views used in novel view and novel pose tasks, but
on full sequences with frame skip at 45. All methods are
trained under the same 8-V100 machine environment, and



evaluated on a single V100.

Detailed Results. In the main text, we draw the conclu-
sion that generalization methods use human prior [22, 13] is
more robust than category-agnostic methods [37, 35, 15] ac-
cording to the results reported in Tab. 3. To further illustrate
this conclusion, we compare the qualitative results in Hard
level of each data factor in Fig. S11. Human prior meth-
ods generally render better images with more precise hu-
man shape and texture compared to category-agnostic meth-
ods, especially in the Texture-Hard and Deformation-Hard
cases. Moreover, in addition to the influence of concep-
tual difference between image blending strategies to direct
radiance prediction in the main text, we also compare the
generalization of image feature extractors between Pixel-
NeRF [37] and VisionNeRF [15]. VisionNeRF [15] uses
a similar structure of PixeINeRF [37], but mainly incorpo-
rates the local CNN-based image encoder with a global vi-
sion transformer. Such a design achieves better visual qual-
ity on average with sharper texture details and higher scores
in both Fig. S11 and Tab. 3, since the transformer is capa-
ble to learn more global coherence features across source
views.

C.2.4 Benchmarks with Sparse View Training

Compare with dense view human synthesis, rendering hu-
mans from sparse views or even with a monocular im-
age setting, take a step further in narrowing the domain
gap between structured in-door data capture and unstruc-

tured open-world data collection. Relaxing the require-
ment on structured data could help towards portable human
avatar generation and may further enable applications like
bullet-time rendering from online videos. Thus, aside from
the main benchmarks, we also evaluate the state-of-the-art
methods’ performances under a spare-view training setting.

Setting. Similar to the dense novel view and novel pose
experiments, we retrain separate models for each dynamic
human rendering method. The key difference of the sparse
view settings from the dense ones is that, each model is
trained with only four balanced views, namely Camera 1,
13, 25, and 37. The other setting details are the same as the
dense novel view and novel pose benchmarks.

Results. We list the quantitative results of both sparse novel
view synthesis and sparse novel pose animation in Tab S3,
and compare the difference between dense and sparse view
training in Fig S12. For the sparse novel view synthesis
task, we can observe that HumanNeRF [36] achieves the
best PSNR and LPIPS metric in most of the splits, and
NeuralBody [28] gets the best SSIM performance. Origi-
nally sparse-designed methods, NeuralBody [28], Animat-
ableNeRF [27], and HumanNeRF [36] ranked top-3 in all
evaluation metrics, this phenomenon is totally different
from dense results in Tab. S2. The performance gap be-
tween sparse view settings and the dense ones can be easily
observed from the inflating bubbles in Fig. S12a. In the
figure, the bubbles with darker colors refer to the perfor-
mances under dense view settings, and the ones with lighter

Splits PSNRT SSIMT LPIPS*|
NV AN NB AnN HN | NV AN NB AN HN | NV AN NB  AnN  HN
Motion Simple 2331 2432 2477 2440 | 2604 | 0948 0954 0972 | 0975 00973 | 84.02 6633 7053 5775  32.26
Motion Medium 2379 2418 22.89 2301 23.84 | 0955 0959 0972 0973 0963 | 73.66 59.10 72.82 7043  37.83
Motion Hard 21.69 2331 2145 22.84 2502 | 0943 0952 0971 0970 = 0972 | 10423 75.17 8373  78.06 3529
2 [Deformation Simple | 24.56 2485 2445 2527 27.59 [0951 0956 0964 0964 0971 [ 6139 4681 7232 5619 3046
£ | Deformation Medium | 2540 2536 2529 2407 24.06 | 0.953 0955 0972 0965 0959 | 57.19 4992 7615 = 6026 6182
& | Deformation Hard 2289 2308 2134 20.18 | 22.80 | 0.931 0935 0964 0948 0937 | 9688 84.66 110.75 98.65 104.05
%' | Texture Simple 2358 2400 2428 2431 2524 [ 0959 0964 0980 0974 00974 | 7606  58.66  64.69 5479 = 32.99
£ | Texture Medium 2441 2508 2501 2037 2641 | 0953 0959 0975 0962 0967 | 6333 4954 6754 8232 | 32.62
> | Texture Hard 2239 2269 21.89 2145 2595 | 0920 0926 0951 0950 = 0.958 | 11036 11552 103.13 86.19  26.35
£ [Tnteraction No 2483 2523 2471 2070 2528 [ 0961 0964 | 0980 0964 0966 | 68.06 4958 67.65 7991 = 45.11
Z | Interaction Simple 2467 2538 2539 2547 2595 | 0963 0968 0982 0977 0971 | 61.90 4324 59.19 5779 3474
Interaction Medium | 22.11 2323  21.67 21.84 22.84 | 0938 0.943 0965 0961 0948 | 9950 80.25 9461 9178  69.95
Interaction Hard 2355 2406 2193 2115  22.18 | 0939 0944 = 0961 0959 0941 | 84.15 70.00 9680 9430  87.81
Overall 23.63 2421 2347 2270 24.86 | 0947 0952 0970 0965 0962 | 80.06 6529  79.99 7449  48.56
Motion Simple 2117 2405 2431 2134 2562 | 0941 0952 0972 0953 | 0972 [ 93.60 6680 7633 8237 | 3245
Motion Medium 19.40 | 21.64 21.50 20.53 21.04 | 0.941 0947 | 0968 0936 0951 | 10036 7829 83.66 61.69  54.61
Motion Hard 1909 2139 20.64 18.85 2358 | 0938 0948 0967 0950 0967 | 11272 8041 87.99 9597 | 40.50
£ [Deformation Simple | 20.73  23.89 2343 ~23.00  26.17 [ 0938 0950 0.962 0960 0966 | 8729 5529 8120 6770 = 3539
2 | Deformation Medium | 22.43  24.89 2519 23.12 2276 | 0.943 0951 = 0971 0952 0955 | 70.79 | 52.05 7568 6172 7044
£ | Deformation Hard 1913 20.83 2134 1852 | 20141 | 0920 0923 0964 0941 0929 | 131.86 10827 11074 = 9170 129.75
£ ["Texture Simple 2044 2342 | 2427 2307 2420 | 0950 0962 0980 0972 0972 | 87.66 5922 65.08 7759  36.64
% | Texture Medium 23.16 2456 2514 2123 | 2663 | 0950 0957 | 0977 0957 0967 | 69.64 5130 72.68 69.96  30.81
& | Texture Hard 2023 2190 21.65 17.93 2566 | 0911 0921 0951 0932 = 0956 | 13626 12449 111.66 116.84 = 24.88
' [Tnteraction No 2145 | 2490 2437 2208 23.52 | 0953 0962 0979 0943 0962 | 8823  53.08 69.11 7076 | 50.70
2 | Interaction Simple 22.18 2505 2532 2277 | 2599 | 0958 0967 0982 0970 0971 | 71.61 43.02 5929 7253 | 3295
Interaction Medium | 19.83 ~ 22.83 2133 2060 2240 | 0931 0943 0966 0959 0947 | 107.04 76.08 9486 9298  66.90
Interaction Hard 2055 | 23.06 2193 21.02 2142 | 0927 0937 0961 0945 00934 | 11091 8178 9679  92.63  95.35
Overall 2075 2326 23.1 21.08 | 23.88 [ 0939 0948 0969 0952 0958 [ 9754 7154 8347 81.11 | 53.95

Table S3: Benchmarks with sparse view training. We abbreviate Neural Volumes [

as ‘NB’, AnimatableNeRF [
performance in the same split respectively.

] as ‘AnN’ and HumanNeRF [

1 as ‘HN’. Cell color

]as ‘NV’, A-NeRF [

] as ‘AN’, NeuralBody [
indicate the best, second best, and third best

]
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(a) Novel view synthesis with different training view numbers.
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(b) Novel pose animation with different training view numbers.

Figure S12: Visualization of quantitative comparison between dense view training and sparse view training. For (a) novel view and
(b) novel pose tasks, we compare the dense view training (42 views) and sparse view (4 views) training on different data splits. Bubbles
in dark tones are with dense view training, and other ones in light tones are with sparse view training. Noted that the scale used here is

different from Fig. 4 for better comparison visualization.

colors refer to the results under sparse view settings. The
underlying reason for the phenomenon lies in the natural
difficulty in sparse neural field supervision — the fewer train-
ing observations require a network to have the more pow-
erful capability on learning multi-view relationships (both
interpolation and extrapolation) and proper hallucinating,
to approximate precise geometry. NeuralBody [28], Ani-
matableNeRF [27], and HumanNeRF [36] all adopt strong
human priors with SMPL mesh, blend weights, and mo-
tion priors. Thus, they are more robust to sparse obser-
vations. In contrast, A-NeRF [31] integrates only skele-
ton prior that is sparse in human shape representation, and
the category-agnostic method Neural Volumes [ | 8] relies on
dense observations to overfit to a particular distribution.
These two methods’ performances drop significantly when
given fewer views during training. Similar to the observa-
tion from dense novel view benchmarks, the current dy-
namic human method performs unsatisfactorily when De-
formation and Texture difficulty increase. Due to the com-
plex texture and off-body non-rigidity, the results in the
sparse setting further enlarge the gap with the dense one. In
contrast with the phenomena in sparse novel view synthesis,
the quantitative results on the sparse novel pose animation
task (Tab. S3) show similar trends compared to the dense

view setting. Specifically, HumanNeRF [36] and Neural-
Body [28] perform the best among the three metrics. A-
NeRF [31] shows better pose generalization ability com-
pared to AnimatableNeRF [27], considering the fact that
AnimatableNeRF [28] performs better in novel view syn-
thesis tasks given seen human poses. When comparing the
differences between dense and sparse settings, quantitative
results display a relatively smaller performance drop. The
phenomenon reveals that, the training observations from
both dense and sparse view settings are not adequate enough
for the benchmark methods to learn a compact dynamic
field for unseen poses.

D. Cross-dataset Details

In this section, we provide more details as a supplement
to the cross-dataset evaluation mentioned in the main paper.
Specifically, we first describe the criteria for selecting the
compared datasets, and review the key attributes of these
datasets in Sec. D.1. Then, we introduce the implementa-
tion and setting details in Sec. D.2. We discuss the results
in Sec. D.3. Finally, we analyze the impact of color consis-
tency on multi-camera datasets in Sec. D.4.
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Figure S13: Cross-dataset affinity map for category-agnostic generalization methods. We crossly evaluate models trained on each
dataset and plot their performance on testing splits on each dataset. The PSNR, SSIM, and LPIPS* are plotted in separate matrices.

D.1. Compared Datasets

To evaluate the potential of the proposed dataset on
boosting algorithms’ generalizability from the data engi-
neering aspect, we compare the proposed dataset with the
most commonly used human-centric multiview datasets on
the generalizable neural rendering task. For a fair compari-
son, we select datasets with foreground segmentation anno-
tations and dense camera views. Thus, several well-known
datasets are not suitable for this evaluation. For example.
Human3.6M [9] only contains four RGB cameras, CMU
Panoptic [1 1] and AIST++ [32, 14] lack official segmenta-
tion annotation®. We select ZJU-MoCap [28], HuMMan [ 1]
and GeneBody [3] for comparison. In this subsection, we
discuss their main features and their adaption to generaliz-
able methods.

ZJU-MoCap [28] is currently the most widely used dataset
in human neural rendering domain. It contains 10 mul-
tiview performance sequences, with accurate camera cali-
bration, human segmentation as well as SMPL annotation.
The main drawback of this dataset is the lack of diversity

3Some human rendering methods [ 13, 2] use their own tools to generate
mask, we exclude these mask sources for fairness.

in clothing and motion and without human objection in-
teraction. Besides, color consistency design might be ig-
nored in ZJU-MoCap [28], where obvious color differences
can be observed between neighboring cameras, as shown
in Fig. S16a. When training generalizable models on this
dataset, we adopt the official splits and follow the imple-
mentation in KeypointNeRF [22].

HuMMan [ 1] is a human action dataset with data captured
under 10 synchronized Kinect RGB-D cameras. It con-
tains 400k sequences and 500 human actions which empha-
size muscle-related movements. The clothing diversity is
marginal where most subjects wear sports and daily cos-
tumes, and there is no human-object interaction either. As
the source images come from the Kinect sensor, they might
be stuck in low-quality, and obvious color differences can
be found in HuMMan [ 1] dataset. Note that the full dataset
is still unreachable, we train models on the released version,
with its official list that contains a training split with 317
sequences and a testing split with 22 sequences. Noted that
different from other datasets, where cameras are organized
in a world coordinate near the origin that axis alignment
with the real world, HuMMan [ 1] uses a coordinate system
relative to the first camera. Thus, we make a rigid transfor-



mation to eliminate the coordinate system difference.
GeneBody [3] is a recent multi-view human performance
capture dataset, which contains relatively wide diversity
coverage among clothing, motion, and interactions. It cap-
tures human performance with 48 synchronized SMP cam-
eras with a low proportion-in-view of the main subject,
where the average height of the human bounding box is
around 600 pixels. We use its official splits with 40 training
sequences and 10 testing sequences.
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Figure S14: Cross-dataset evaluation on our DNA-Rendering
data splits. We visualize the performance of models trained on
different datasets on the proposed dataset’s splits.

D.2. Detailed Settings

Multiple factors might affect the impact assessment
across different datasets on neural rendering tasks, eg., the
proportion of subjects in camera views, data scale, anno-
tation accuracy, source view selection, training status, efc.
Our main goal is to investigate where the diversity of the
proposed dataset can benefit the generalization of human
rendering. We conduct the experiments in the following set-
tings. 1) In order to ensure the fairness of dataset compari-
son, we need to unify several input conditions, e.g., num-
ber and resolution of source views, etc. Meanwhile, we
only investigate the category-agnostic generalizable meth-
ods, namely PixelNeRF [37], IBRNet [35] and Vision-
NeRF [15], to avoid difference of input and accuracy of
human prior in multiple datasets. 2) Evaluating the whole

object-centric images with background removal produces a
large rendering metric gap if the center subjects’ propor-
tions in camera views differ a lot. Thus, different from
the novel pose benchmark in Sec. 4 and Sec. C.2.3 where
a half resolution is used, we crop the subjects out from the
original image in all datasets with square bounding boxes
and resize them to 512 x 512 resolution for both source
views and target views*. 3) As the discussed datasets are all
captured in dense circling camera arrays, we manually se-
lect four balanced views as the reference views at the same
height that have a roughly 90-degree interval. 4) During
training, we use the same learning rate over all datasets and
stop the training process with the same global step. Each
model is trained on one §-V100 machine with distributed
data-parallel stopping at 200k iterations. 5) Finally, we
train and evaluate all the models based on the official splits
of each dataset. For the comparable data volume magni-
tude of test samples, we size the data volume of test frames
or test views on each dataset with ( 45 frame-skip, 18 test
views ) on GeneBody and DNA-Rendering , ( 45 frame-
skip, 12 uniform sampled test views ) on ZJU-MoCap , and
( 8 frame-skip, 6 test views ) on HuMMan, respectively.

D.3. Additional Results

In the main paper, we present the average PSNR per-
formance over all three general scene methods, i.e., Pix-
elNeRF [37], IBRNet [35], and VisionNeRF [15]. Here,
we present the performances of these methods individually
(Fig. S13), and illustrate the qualitative results (Fig. S15).
We unfold the result analysis in terms of in-domain, and
cross-domain in Sec. D.3.1 and Sec. D.3.2 respectively. A
discussion on the impact of color consistency is discussed
in Sec. D .4.

D.3.1 In-domain

In-domain refers to the problem of evaluating models with
the trainset and testset sharing the same underlying data
distribution. We observe two key phenomena: 1) mod-
els trained on datasets with low data diversity achieve
better in-domain results. As shown in the diagonal ele-
ments of the matrices in Fig. S13, for in-domain gener-
alization performance, methods trained on HuMMan [1]
and ZJU-MoCap [28] achieve the best and second perfor-
mances with relatively appealing metric values. In contrast,
their in-domain performances on GeneBody and DNA-
Rendering are worse than the other two datasets. Not-
ing that test sets in ZJU-MoCap and HuMMan only con-
tain cases with textureless clothing and easy motion illus-
trated in Fig. S15, which are easy cases in terms of data

“Note that this setting leads to the absolute values in cross-dataset eval-
uation worse than the ones in novel identity task, due to the larger propor-
tion of human foreground.
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Figure S15: Qualitative cross-dataset results. We demonstrate samples from different datasets (left labels) generated by IBRNet [35]

models trained on different datasets (bottom labels).

difficulty. Besides, the nature of textureless data and easy
human geometry is relatively friendly to category-agnostic
generalization methods that conduct multiview image fea-
ture aggregation in a common manner without geometry
prior. 2) Larger data volume and diversity boosts in-domain
performance. Concretely, like the proposed dataset, Gene-
Body [3] contains a train and test split with a wide dis-
tribution of clothing, accessories, and motion, while with
far less data volume and diversity compared to DNA-
Rendering (about 10% data volume of our dataset). Despite
both test sets of GeneBody and proposed dataset containing
cases with even distribution in multiple difficulties, all three
methods demonstrate our boost on in-domain performance.

D.3.2 Cross-domain

Cross-domain refers to directly evaluating the pre-trained
model on one dataset to the test split of another dataset,
which is represented by the off-diagonal elements in
Fig. S13. We expand the result analysis in two folds: 1)
datasets with large variations of data attributes and diffi-
culties boost the cross-domain generalization. Higher per-
formance degradation can be observed in off-diagonal ele-
ments in each row in ZJU-MoCap [28] and HuMMan [1]
in Fig. S13. Besides, even when ZJU-MoCap [28] trained
model test on cross-domain case with easy clothing and mo-
tion, the cross-domain performance is still far from accept-

able, refer to left most blue T-shirt case in Fig. S15. On the
contrary, GeneBody [3] and DNA-Rendering experience a
very marginal degradation when evaluating other test sets.
2) Larger data volume and diversity can also boost cross-
domain robustness. As mentioned in the in-domain part,
DNA-Rendering is 10 times than GeneBody in terms of
data volumes, such improvement helps increase the model’s
generalization ability in considering margin. In the over-
whelming majority of first-row elements, models with the
proposed dataset get the best cross-domain results and even
perform better than in-domain results of GeneBody.
Cross-domain on DNA-Rendering Splits. To further in-
vestigate the performance of different dataset-trained mod-
els’ performance on different human performance dimen-
sions and difficulties, we visualize their performance on
DNA-Rendering splits in Fig. S14. We plot the in-domain
result of our dataset-trained model as a reference bar. Gene-
Body [3] has a relatively wide range of dimensions across
our dimension and it achieves the best rendering quality
among all splits. On the other hand HuMMan [!] and ZJU-
MoCap [28], only contain easy clothing, motion, and inter-
action, the performance on more difficult splits drop signif-
icantly espec compared to GeneBody [3].

D.4. Impact of Color Consistency

To further analyze the impact of color consistency of
training dataset in generalizable rendering, we unfold the
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stats across views on the cross-dataset results. Due to the
different groundtruth in different views, it is hard to draw
any conclusion from any single frame. Thus, we expand the
average PSNR across camera views and analyze the statis-
tics. Noted that we only select the test views which have
very close angle distances from the nearest source view, to
erase the performance gap from the viewpoints. The av-
erage PSNR across testing cameras is plotted in Fig. S16.
More concretely, we visualize the in-domain statistics of
cameras’ average PSNR in Fig. S16b. When training and
testing a model on the same dataset, the camera color
distinction will remain constant. Models trained on the
datasets that cannot ensure color consistency across views
(illustrated in Fig. S16a) might treat the color difference
of different views as the view-depend effect and memorize
it. The variance of cameras’ average performance in such
datasets is slightly higher than GeneBody [3] and the pro-
posed dataset. Cross-domain generalization span on views
is also plotted in Fig. S16c. Different from in-domain statis-
tics, when generalizing on other datasets, models trained
on datasets with color inconsistency all suffer a major aver-
age performance dropping, and the variance of camera per-
formance becomes even larger. This phenomenon is very
noticeable on cross-evaluation between ZJU-MoCap [28]
and HuMMan [1]. While models trained on the proposed
dataset as well as GeneBody [3], have very small view
performance variations between each other. The increased

view variation on ZJU-MoCap [28] and HuMMan [ 1] is due
to the nature color difference on their groundtruth. In a nut-
shell, with the best color consistency, the proposed dataset
can benefit the community by providing high-quality data
with faithful probing capability across views.

E. Future Work

Leaderboard. In the current human-centric rendering com-
munity, researchers from different institutions use different
datasets and experimental settings to evaluate the perfor-
mances of their algorithms. There is no agreement across
institutions to benchmark human rendering methods under
the same criterion yet. To reduce such divergence and align
the standards, we proposed a large-scale diverse dataset
DNA-Rendering, and construct a complete benchmark in
three human-centric rendering tasks. Benchmarks are eval-
uated on different data splits on different factors and dif-
ficulties. Additionally, we conduct a cross-dataset evalua-
tion which demonstrates the proposed dataset can benefit
the community from its diversity and coverage. In DNA-
Rendering, all actors are signed with agreements before
data collection. Thus, all of the data is with a Creative Com-
mons license and free for use under certain usage agree-
ments. In the future, we will host a web-based leaderboard,
and release the easy-to-run tools to the community to better
reduce the divergence.



Robust Human-centric Matting Refinement. In the an-
notation pipeline, we use Grab-cut [29] to refine bad results
of CNN-based methods, yet it is still not perfect. Since per-
frame human labeling is impractical due to the volume of
captured data, we involve human checks over segmentation
results, and only cases without major artifacts in the whole
sequence across views will be released. We tried 3D meth-
ods to further refine results, e.g., using Instant-NGP [24]
to train with valid views and infer the bad views. How-
ever, the results are not appealing enough (blurry edges).
We will further investigate more robust tools. These chal-
lenges could also benefit matting research. We believe with
the development of relevant techniques, matting robustness
will be improved in the near future.

New Benchmarks. In this paper, we set up three task
benchmarks as a kick-off of the DNA-Rendering dataset.
Our datasets could potentially be used in many other tasks
related to human-centric rendering, such as garment mod-
eling/animation and human shape completion. We encour-
age and welcome the community to join us to unlock more
downstream tasks.
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