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A. Implementation Details

Training. For all experiments, we train the model using
an AdamW [5] Optimizer with a weight decay of 1e-4 and
batch size of 128 on 4 GPUs. We use cosine learning rate
decay and the intial learning rate is 1e-3. The dropout rate in
all transformer blocks is set to 0.2. We use an agent-centric
coordinates system and only consider agents and lane seg-
ments within 150 meters of the focal agent. The latent fea-
ture dimension is set to 128.

Agent embedding. The agent’s embedding layer is a Fea-
ture Pyramid Network (FPN), primarily composed of neigh-
borhood attention blocks (NATBlock) and 1D-convolution
networks, depicted in Figure 1. The agent’s input is of the
shape N×50×4, which corresponds to a sequence of histor-
ical states spanning 5 seconds, sampled at a frequency of 10
Hz. Each state includes the agents’ displacement and veloc-
ity difference relative to the previous timestamp, along with
a padding flag indicating the observation status. The NAT-
Block exhibits an identical structure to the standard Trans-
former encoder block [7] (multi-head self-attention, add &
norm, and fully-connected layer), except for the replace-
ment of self-attention with 1D neighborhood attention [4].
All downsample and upsample operators are implemented
with 1D-convolution, having a down/up-sampling ratio of
2. We employ the same layer (but a seperate one) for the
agents’ future embedding during the pre-training phase.

Lane embedding. The non-overlapping lane segments are
acquired using the official Argoverse 2 API1. Each individ-
ual lane segment is precisely interpolated to consist of 20
points. Each point encompasses its two-dimensional coor-
dinates, normalized with respect to its geometrical center,
as well as a padding flag denoting its presence within the
region of interest to the focal agent. The architecture of the
lane embedding layer adheres to the PointNet design [6],
with a comprehensive depiction of its detailed structure pro-
vided in Figure 2.

Fine-tune. We employ an end-to-end finetuning approach
for the motion forecasting task, as illustrated by the over-
all architecture depicted in Figure 3. Throughout the fine-
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Figure 1: Detailed architecture of the agent history embed-
ding layer. Numbers in the NATBlock denote the number of
stacked blocks, the kernel size of neighborhood attention,
and the number of heads. Numbers in the Conv indicate the
hidden dimensions and stride.
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Figure 2: Detailed architecture of the lane embedding layer.

tuning process, only the history and lane features are em-
bedded as inputs. Subsequently, the encoded history tokens
of the agents are utilized for generating future predictions
and associated confidences via the multi-modal decoder.

Experiment Setting. We report the default setting for the
pre-training and fine-tuning phase of Forecast-MAE in Ta-
ble 1 and Table 2.

SSL-Lanes. To adapt SSL-Lanes [1] to the Argoverse
2 dataset, we change the history and future length to 50
and 60, respectively. The region of interest is increased
from 100 to 150 meters accounting for the longer observa-
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Figure 3: Overall architecture of fine-tune model

tion/prediction horizon. We follow the default experiment
setting of SSL-Lanes, shown in Table 3.

config value

optimizer AdamW
learning rate 1e-3
weight decay 1e-4
learning rate schedule cosine
batch size 128
training epochs 60
warmup epochs 10
masking ratio [0.4, 0.5]
loss weight [1.0, 1.0, 0.35]
augmentation none

Table 1: Experiment setting for Forecast-MAE pre-training.
Masking ratios refer to history trajectory and lane segments,
respectively.

B. Additional Results

Results on more datasets. We provide preliminary exper-
imental results on Argoverse 1 [2] and WOMD [3]. The
results are shown in Table 4.

More visual results and comparisons. We compare the
performance of Forecast-MAE with two baselines, namely
SSL-Lanes and Scratch (trained from scratch). The compar-
ative visualization results are displayed in Figure 4. In com-
parison to the baselines, our Forecast-MAE model yields
greater accuracy in direction and velocity prediction, even

1https://github.com/argoverse/av2-api

config value

optimizer AdamW
learning rate 1e-3
weight decay 1e-4
learning rate schedule cosine
batch size 128
training epochs 60
warmup epochs 10
augmentation none

Table 2: Experiment setting for Forecast-MAE fine-tuning

config value

optimizer Adam
learning rate 1e-3
learning rate schedule 1e-4 at 62
batch size 128
training epochs 80
augmentation none

Table 3: Experiment setting for SSL-Lanes.

Dataset Method (year) minADE minFDE MR

WOMD
(test set)

DenseTNT(’21) 1.039 1.551 0.157
MTR(’23) 0.605 1.225 0.137
Ours/scratch 0.689 1.341 0.182
Ours/fine-tune 0.632 1.253 0.167

AV1
(val set)

TPCN(’21) 0.73 1.15 0.11
Autobots(’22) 0.73 1.10 0.12
Ours/scratch 0.736 1.103 0.103
Ours/fine-tune 0.710 1.054 0.945

Table 4: Preliminary results on WOMD test set and Argo-
verse 1 validation set, and comparison with representative
methods. All results are from single model (w/o ensemble).

in high-speed and highly interactive scenarios. Notably, our
fine-tuned model is the only one that captures lane-change
behavior in scene (III). Furthermore, Forecast-MAE can
generate a diverse range of multi-modal predictions while
simultaneously ensuring precision, whereas other meth-
ods often predict infeasible trajectories. The visualization
outcomes provide compelling evidence that our method is
highly effective in encapsulating motion, road geometry,
and cross-modal interaction features.

Maksed scene reconstruction. We showcase the recon-
struction results of two complex scenarios from Argoverse
2 validation set using our pre-trained model, which was
trained with a history and lane masking ratio of 0.5. As
depicted in Figure 5 (first row), the pre-trained model ex-
hibits a remarkable ability to recover the original scenario,

https://github.com/argoverse/av2-api


including the history and future trajectories of agents and
intricate lane geometries. Interestingly, our model performs
well even with higher lane masking ratios (second and third
rows in Figure 5). Despite a high lane masking ratio of
0.8, where most of the lane structures are lost, our model
can still reconstruct most of the lane structures reasonably.
These results suggest that our model has learned rich and
profound scene representations through MAE-based self-
supervised pre-training.
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Figure 4: More visualization results and comparisons on Argoverse 2 validation set. The focal agent is denoted in orange,
while the others are indicated in blue. The deep blue lines with arrows denote the predictions, and the gradual pink lines with
arrows represent the ground truth. The arrows indicate the direction of motion. The gradual blue lines represent the historical
trajectories, with the color transitioning from light to dark to indicate the direction of motion.
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Figure 5: Masked scene reconstructions results on Argoverse 2 validataion set. The pre-trained model with a history/lane
masking ratio of 0.5 is utilized to process input scenarios with higher lane masking ratios. The inputs and results are displayed
in a top-down sequence, corresponding to the lane masking ratios of 0.5, 0.65, and 0.8.


