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In this supplement, we offer detailed information about
four datasets and the implementation of few-shot general-
ization tasks (Section A). Additionally, we present further
frequency analysis of few-shot methods to investigate the
necessity and effectiveness of frequency components on the
overall performance of the proposed model (Section B).
Furthermore, we provide additional experimental results for
better clarity (Section C).

A. Implementations
A.1. Datasets

We conduct extensive experiments on four few-shot
datasets, i.e., miniImageNet [11], tieredImageNet [9],
CUB [12], and FS-DomainNet [3].

• miniImageNet [11] is a subset of the ILSVRC-12
challenge [6] proposed for few-shot classification,
which contains 100 diverse classes with 600 images
of size 84 × 84 × 3 in each category. Following the
setting [8] used in previous works, all 100 classes are
divided into 64, 16, and 20 classes for training, valida-
tion, and testing, respectively.

• tieredImageNet [9] is also a subset of ImageNet,
which contains more classes that are organized in a hi-
erarchical structure, i.e., 608 classes from 34 top cate-
gories. For the general few-shot setting, we follow the
setups proposed by [9] and split 608 categories into
351, 97, and 160 for training, validation, and testing,
respectively. For the coarse-to-fine annotated setting,
we split the dataset with 20, 6, and 8 super classes for
training, validation, and testing, respectively.

• CUB [12] contains total 11788 images from 200 dif-
ferent birds, and is initially proposed for fine-grained
image classification. Following the few-shot split
in [2, 5], 200 classes are divided into 100, 50, and 50
for training, validation, and testing, respectively.
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• FS-DomainNet [3] considers both few-shot and cross-
domain scenarios to evaluate the generalizability
across different domains. It contains 527156 images
with 299 classes from 6 domains (i.e., Sketch, Quick-
draw, Real, Painting, Clipart, and Infograph), selected
from DomainNet [7]. We follow the setup proposed
by [3] which splits 299 categories into 191, 47, and 61
for training, validation, and testing, respectively.

A.2. Few-shot Generalization Settings

A.2.1 Cross-Dataset Generalization

In this setting, we only consider the distribution gaps of
classes between training and testing datasets with the same
style, i.e., miniImageNet and CUB with natural images.

miniImageNet → CUB. Unlike the general setting in
previous works [2, 14], which trains few-shot models on all
100 classes of miniImageNet, only 64 classes from the train-
ing set of miniImageNet are used for meta-training, while
the models are evaluated on the testing set of CUB with 50
classes.

A.2.2 Cross-Domain Generalization

Unlike the cross-dataset generalization, we also further
consider the generalized performance of few-shot meth-
ods from training (source) domains to the testing (tar-
get) domain, where the domain represents the image style,
e.g., natural or painting. We split the cross-domain sce-
narios into two specific settings according to the num-
ber of the source domains, i.e., cross-domain from single
(e.g., miniImageNet) or multiple source domains (e.g., FS-
DomainNet). Note that FS-DomainNet contains 6 distinct
domains of 345 classes, we select the quickdraw domain
as the target domain for evaluation under these two settings
and left the other five domains for meta-training.

miniImageNet → Quickdraw. In this setting, 64 classes
from the training set of miniImageNet are used for meta-



Figure A: Overview of the evaluation pipeline for few-shot learning with frequency selection. For example, given a 3-way
1-shot input task (S,Q), we first convert each image Xi into the frequency domain Di with DCT. Then we select partial
frequency components (e.g., middle FCs here) and convert them back to the spatial domain (S̃, Q̃). After that, we employ
the normalization and class prediction Y with the trained model fθ.

training, while the models are evaluated on the testing set
of the Quickdraw domain with 61 classes.

FS-DomainNet → Quickdraw. In this setting, 191
classes of 5 domains (Sketch, Real, Painting, Clipart, and
Infograph) from the training set of FS-DomainNet are used
for meta-training, while the models are evaluated on the
testing set of Quickdraw domain with 61 classes. Follow-
ing the few-shot generalization setting, there is no overlap
between training and testing domains or classes.

A.2.3 Coarse-to-Fine Annotated Generalization

In this setting, we consider the annotation difference be-
tween training and testing sets for few-shot generalization.
To evaluate the generalization performance under this set-
ting, we conduct experiments on tieredImageNet, which
provides the hierarchical annotations with 20, 6, and 8 super
classes for training, validation, and testing.

tieredImageNet (Coarse) → tieredImageNet (Fine).
20 superclasses from the training set of coarse-annotated
tieredImageNet are used from meta-training, while the
models are evaluated on 160 classes from the testing set of
fine-annotated tieredImageNet.

B. Frequency Analysis for few-shot learning
B.1. Discrete Cosine Transform

To generate the frequency representation of an input
RGB image X ∈ RH×W×3, we apply the 2D-Discrete Co-
sine Transform [1] (2D-DCT) function denoted as DCT (·)
as the following

D ≜ DCT (X) = TXT ′, (1)

where T denotes the 1D-DCT, making the DCT(·) opera-
tor separable. We can then remove or preserve partial fre-
quency components of each input image, followed by an

Figure B: Visualization of original images from three few-
shot datasets, as well as the images reconstructed with dif-
ferent frequency components dubbed FCs (64 in total) con-
taining the different information, i.e., Low FCs contain the
color and style information, Middle FCs contain the image
structures, and High FCs contain the finer details, respec-
tively.

Inverse 2D-DCT function denoted as IDCT(·) to transform
it back into the spatial domain with the original input size,
which is represented as:

X̃ = IDCT (ℓ(D)) = T ′ℓ(D)T . (2)

Here ℓ(·) denotes the masking operator in the frequency do-
main, to select partial frequency components of the image
as shown in Figure B.

Note that there are other available tools to convert the
spatial image to frequency space, such as Discrete Fourier
Transform (DFT). In this paper, we choose DCT as it is
a real-valued transform, compared to complex-valued DFT
which may double the complexity of the model involving
complex coefficients.



B.2. Evaluation Pipeline

As shown in Figure B, for a given few-shot meta-task
T m

test = (S,Q) on the novel testing set, we evaluate the
effect of frequency components on the updated meta-task
T̃ m

test = {S̃, Q̃} constructed by removing or preserving par-
tial components (e.g., low-frequency components) of each
image in the Discrete Cosine Transform (DCT) frequency
domain for class prediction. Apart from the results shown
in the main manuscript, we also conduct experiments on all
split frequency components under the same settings on the
miniImageNet, CUB, tieredImageNet, and FS-DomainNet
datasets.

We apply the public implementation of evaluated few-
shot methods (ProtoNet [10], FEAT [16], DeepEMD [17],
FRN [13], and BML [19]) with the default hyper-parameter
settings for model training, and integrate the DCT, IDCT,
and frequency selection modules to these methods in the
testing stage for evaluation.

B.3. Cross-Dataset Generalization

Table A shows evaluation results of few-shot methods
trained on miniImageNet and CUB datasets under the gen-
eral and cross-dataset settings. We can observe that under
the standard setting for the 1-shot task (training and test-
ing on the same dataset, i.e., miniImageNet and CUB), test-
ing without high FCs may decrease the performance on the
source dataset, which indicates that models need to capture
this information that is not perceivable to humans but essen-
tial for classification with less supervision.

Additionally, we also show the correlation matrix of the
prototypical feature vector of each class extracted by the
backbone in the FEAT [16] in Figure C on the CUB dataset.
We observed that the trained model failed to distinguish dif-
ferent species of birds when only preserving high-frequency
information in the images. One possible reason is that the
high-frequency information encodes more edge details of
birds with high similarity scores between images of differ-
ent classes. Thus, the trained model performs better on im-
ages without high FCs. Both t-SNE and correlation matrix
show that low and mid-FCs are critical for generalizing the
fine-grained task, which encodes more color and shape in-
formation of birds.

B.4. Cross-Domain Generalization

We validate the effect of frequency information under
two cross-domain few-shot generalization settings and re-
sults are shown in Table B.

As observed from the first two columns in Table B, com-
pared with results evaluated on original images with all FCs,
all methods perform worse on images only with low FCs
for 1-shot and 5-shot settings, while they all achieve better
results only with mid or high FCs. CAM [18] results in Fig-
ure E also show that the mid and high FCs can capture more

class-relevant image regions compared with the original in-
put images. One possible reason is that the target Quick-
draw domain contains more patterns that rarely appear in
natural images on the source miniImageNet dataset, and the
background is entirely irrelevant to the classification, which
is mainly captured by low FCs. In contrast, the shape or
structure information extracted in the mid and high FCs is
essential for this cross-domain classification scenario. Fur-
thermore, we compute the correlation matrix of the image
features extracted by the backbone in the FEAT [16] on the
testing set of the quickdraw, as shown in Figure D. The
results show that high FCs help to increase the intra-class
distances while keeping the inter-class distance unchanged,
thus improving the classification performance.

B.5. Coarse-to-Fine Generalization

Table C shows the results on the tieredImageNet bench-
mark with different levels of label annotations. We observe
that FEAT performs best across all settings and shot lev-
els compared with the other methods. This is due to the
fact that FEAT employs the self-attention module to learn
task-specific feature representations, while DeepEMD only
utilizes the sample-based earth mover’s distance instead of
Euclidean/cosine metrics, and BML additionally considers
global label information, both of which are vulnerable to
class distributions of the entire training set.

The second observation is that the models learned on
the coarse-annotated dataset generalize worse than the fine-
annotated dataset. A possible explanation is that training
between classes with large gaps forces the models to capture
the information or features that are relevant to super-class
clusters while ignoring the intra-class differences, which
can be also seen from the t-SNE visualization in Figure F.
We also observe that ProtoNet and BML can perform bet-
ter than DeepEMD and FEAT when removing the high FCs.
We have an assumption that DeepEMD and FEAT both de-
sign the channel-wise operation based on the extracted fea-
tures, which makes them sensitive to the images with dif-
ferent FCs as each channel can capture various frequency
components.

B.6. Maximum Mean Discrepancy Analysis

The Maximum Mean Discrepancy (MMD) [4] is a dis-
tance measure between two domains based on the em-
bedding of distribution measures in a reproducing kernel
Hilbert space H, which has been widely applied in trans-
fer learning problems, and the class-wise MMD could be
formulated as follows:

MMD(X,Y ) =

∥∥∥∥∥ 1n
n∑

i=1

φ (xi)−
1

m

m∑
i=1

φ (yi)

∥∥∥∥∥
2

H

, (3)

where X = {x1, x2, ..., xn} ∈ Rn×d and Y =
{y1, y2, ..., ym} ∈ Rm×d are two distributions with n and



Method mini→ mini mini→ CUB CUB→ CUB CUB→ mini CUB→ tiered

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet [10] 63.56 79.86 45.22 66.29 74.20 87.38 39.56 56.76 37.76 52.51
ProtoNet only w/ Low FCs 41.54 57.48 38.10 53.13 54.88 71.99 39.37 55.79 38.49 52.02
ProtoNet only w/ Mid FCs 58.83 73.45 37.82 52.50 50.69 68.04 39.36 55.85 35.07 47.55
ProtoNet only w/ High FCs 45.86 56.47 30.74 37.96 31.81 40.03 39.40 55.73 29.78 36.38
ProtoNet w/o Low FCs 60.34 74.83 38.54 53.60 51.82 69.17 39.42 55.87 34.85 46.62
ProtoNet w/o Mid FCs 56.84 71.83 41.42 59.02 63.30 79.66 39.41 55.77 37.94 52.07
ProtoNet w/o High FCs 63.51 77.75 39.97 67.09 74.22 87.44 39.96 56.95 38.81 53.27

DeepEMD [17] 64.93 81.73 51.72 77.34 76.34 88.52 39.41 54.04 41.94 56.58
DeepEMD only w/ Low FCs 41.33 60.86 42.76 64.04 62.10 79.40 36.55 49.86 39.78 52.67
DeepEMD only w/ Mid FCs 47.96 69.49 39.80 60.40 43.47 62.74 36.12 51.31 34.54 48.65
DeepEMD only w/ High FCs 42.61 59.89 32.45 44.10 31.34 40.74 31.92 45.00 28.71 38.53
DeepEMD w/o Low FCs 49.34 71.17 39.97 61.22 43.88 63.26 36.35 51.56 34.63 48.77
DeepEMD w/o Mid FCs 56.24 74.06 45.95 69.17 68.66 84.38 37.52 52.07 41.13 53.04
DeepEMD w/o High FCs 64.26 80.74 52.50 78.19 75.95 88.96 39.10 53.77 41.90 56.57

FEAT [16] 66.52 81.46 45.33 62.28 76.68 87.91 41.83 55.71 38.06 51.07
FEAT only w/ Low FCs 39.59 54.90 37.64 52.94 58.00 74.10 38.88 53.80 38.00 51.16
FEAT only w/ Mid FCs 65.57 75.81 39.01 54.78 50.52 67.05 39.77 55.05 34.82 45.83
FEAT only w/ High FCs 42.20 56.28 27.93 36.76 29.68 34.93 32.96 41.97 24.82 25.70
FEAT w/o Low FCs 62.15 77.29 39.38 56.13 51.80 68.53 39.89 55.35 34.37 44.52
FEAT w/o Mid FCs 58.30 74.38 42.28 62.66 65.96 81.45 40.19 55.45 36.55 48.59
FEAT w/o High FCs 65.40 81.62 46.63 66.99 75.88 88.65 41.93 58.31 38.93 52.21

BML [19] 65.41 82.17 49.85 71.22 74.36 89.75 42.56 60.59 40.41 57.20
BML only w/ Low FCs 39.79 47.86 40.98 58.26 40.60 57.89 35.86 50.97 36.30 50.92
BML only w/ Mid FCs 54.53 68.18 40.66 57.58 50.52 67.05 39.77 55.05 34.82 45.83
BML only w/ High FCs 42.04 58.52 31.77 42.17 29.68 34.93 32.96 41.97 24.82 25.70
BML w/o Low FCs 56.02 74.23 40.98 57.58 51.80 68.53 39.89 55.35 34.37 44.52
BML w/o Mid FCs 54.00 72.88 44.72 65.12 65.96 81.45 40.19 55.45 36.55 48.59
BML w/o High FCs 65.14 82.18 49.89 71.38 74.19 89.68 42.57 61.02 40.87 57.80

Table A: Full evaluation results of frequency components under standard and cross-dataset few-shot settings. For A → B,
we train few-shot methods on the training set from A and evaluate the performance on the testing set from B. Note that we
train all the models with all FCs and fix the models for different frequency components (FCs) during evaluation. The best
and second best results under each setting for each few-shot method are highlighted as Red and Blue, respectively.

Figure C: Correlation matrix between test class prototypes on the CUB dataset. For each class, we compute the mean feature
vector as the prototype of this class by considering images with different frequency components, i.e., (a), (b) and (c) represent
the original image, image w/o high FCs, and image only w/ high FCs, respectively. The depth of color indicates the similarity
score.

m classes, and d is the dimension of prototype feature. φ(·)
is the mapping function to map the feature into a reproduc-
ing kernel Hilbert space.

To validate the effectiveness of different frequency com-
ponents on various few-shot settings mentioned in the pa-
per, we adopt class-wise MMD to measure the distribution



Figure D: Correlation matrix of test sample features for 20 test classes on the Quickdraw domain. The feature extractor is
trained on the miniImageNet dataset. For each class, we randomly select 20 images with the same frequency components,
i.e., (a), (b), and (c) represent the original image, image w/o high FCs, and image only w/ high FCs, respectively. The depth
of color indicates the similarity score.

Input w/ Mid FCs w/ High FCs

Figure E: CAM [18] visualization of samples from the
target Quickdraw domain reconstructed with different fre-
quency components, the first three columns are images with
all FCs, only with Mid FCs, and only with high FCs, and the
right three columns are the corresponding CAM results, re-
spectively.

gap between the training set and the testing set with im-
ages only preserving partial frequency information. All re-
sults are based on the ProtoNet [10] method. Specifically,
we adopt the trained backbone on the training set with the
original images to compute the real prototype of each train-
ing class as X ∈ Rn×d, where n and d are the numbers
of training classes and the dimension of prototype for each
category, respectively. Similarly, we adopt the trained back-
bone on each testing set to compute the real prototype of
each testing class as Y ∈ Rm×d, where m and d are the
number of testing classes and the dimension of prototype
for each category, respectively.

The MMD results are shown in Tables D, E, and F.
All tables show a large domain gap between the training

(a) General 
w/ All FCs

(b) C to F
w/ All FCs

(c) C to F 
w/o High FCs

Figure F: T-SNE visualization of the image features (top)
and Class Correlation Map visualization (bottom) for the
same few-shot task with 40 query samples of 5 fine-
annotated classes on the tieredImageNet dataset extract by
FEAT trained on the (a) general 351 training classes, (b)(c)
coarse-annotated 20 training classes. (a)(b) represents eval-
uation with all FCs, while (c) represents evaluation without
high FCs. Each row and column box in each correlation
map denotes one class(way) under the 5-way settings. The
numerical value (color depth) of each box indicates the sim-
ilarity between the two categories corresponding to its row
and column. Higher values (that is, darker colors) indicate
more similarity between the two categories. C, F denote
tieredImageNet with coarse-grained or fine-grained annota-
tions.

and testing set for all three settings, making it challeng-
ing for model generalization. We can observe that remov-
ing high FCs can narrow the domain gap between CUB
and miniImageNet, i.e., from 1.8236 to 1.8011 in Table D,
leading to better performance under the cross-dataset few-



Method mini → Q F→ Q

1-shot 5-shot 1-shot 5-shot

ProtoNet 48.65 64.32 59.16 74.43
ProtoNet only w/ Low FCs 43.27 58.06 50.80 66.10
ProtoNet only w/ Mid FCs 49.16 66.28 59.67 75.14
ProtoNet only w/ High FCs 50.62 66.26 59.43 75.38
ProtoNet w/o Low FCs 48.22 63.81 59.50 74.64
ProtoNet w/o Mid FCs 48.97 65.53 58.94 74.14
ProtoNet w/o High FCs 49.26 65.99 59.30 74.55

DeepEMD 53.65 58.04 60.55 78.52
DeepEMD only w/ Low FCs 49.41 66.17 51.66 74.03
DeepEMD only w/ Mid FCs 53.99 72.58 59.32 78.65
DeepEMD only w/ High FCs 56.85 75.12 58.33 73.72
DeepEMD w/o Low FCs 52.66 72.15 59.25 79.62
DeepEMD w/o Mid FCs 54.69 73.94 57.67 78.42
DeepEMD w/o High FCs 53.63 73.44 60.73 80.17

FEAT 45.52 55.96 59.86 77.23
FEAT only w/ Low FCs 42.46 57.27 32.06 64.28
FEAT only w/ Mid FCs 47.43 62.72 56.81 77.37
FEAT only w/ High FCs 47.56 63.03 45.78 75.70
FEAT w/o Low FCs 44.20 53.93 58.39 77.54
FEAT w/o Mid FCs 46.56 60.29 55.23 75.99
FEAT w/o High FCs 47.25 60.73 60.58 77.75

BML 55.29 75.47 42.69 65.38
BML only w/ Low FCs 49.29 68.01 25.22 60.04
BML only w/ Mid FCs 54.35 74.27 25.53 65.68
BML only w/ High FCs 55.77 76.48 42.25 63.11
BML w/o Low FCs 55.09 75.34 43.18 66.86
BML w/o Mid FCs 55.43 75.16 43.33 63.00
BML w/o High FCs 54.20 74.14 42.80 65.59

Table B: Full Cross-Domain results on the QuickDraw
domain. We train the model on the miniImageNet and
FS-DomainNet datasets (w/o the QuickDraw domain), re-
spectively, and evaluate on the novel QuickDraw domain.
mini, Q, and F denote miniImageNet, QuickDraw, FS-
DomainNet datasets, respectively. The best and second
best results under each setting for each few-shot method are
highlighted as Red and Blue, respectively.

shot classification setting. In contrast, only preserving high
FCs helps to reduce the domain shift between the source
(miniImageNet or FS-DomainNet) and target (Quickdraw)
domains in cross-domain generalization settings, i.e., from
2.7887 to 2.4252 and from 4.0125 to 3.2707 in Table F.
Table E also shows the gap across different levels of anno-
tations on the tieredImageNet dataset, which explains the
necessity of the coarse-to-fine annotated generalization set-
ting. Similar to the cross-dataset generalization setting, we
find that considering the low and mid-frequency informa-
tion helps the model trained on coarse-annotated classes to
generalize better to both coarse and fine-annotated unseen
classes.

Method Coarse → Coarse Coarse → Fine

1-shot 5-shot 1-shot 5-shot

ProtoNet 49.44 66.36 46.61 64.08
ProtoNet only w/ Low FCs 30.18 38.64 36.20 47.87
ProtoNet only w/ Mid FCs 41.72 58.25 44.51 64.35
ProtoNet only w/ High FCs 31.30 42.99 36.10 47.51
ProtoNet w/o Low FCs 43.61 60.72 43.44 43.22
ProtoNet w/o Mid FCs 44.11 60.04 60.04 59.18
ProtoNet w/o High FCs 49.39 66.36 49.66 66.37

DeepEMD 53.53 66.26 35.27 65.87
DeepEMD only w/ Low FCs 32.21 46.24 40.67 58.50
DeepEMD only w/ Mid FCs 34.94 54.94 48.63 66.92
DeepEMD only w/ High FCs 30.69 42.20 37.57 53.20
DeepEMD w/o Low FCs 36.43 57.23 50.05 68.92
DeepEMD w/o Mid FCs 45.29 60.12 56.26 62.26
DeepEMD w/o High FCs 51.64 64.23 35.14 63.48

FEAT 55.01 69.25 47.54 64.67
FEAT only w/ Low FCs 30.77 42.63 28.73 36.70
FEAT only w/ Mid FCs 44.45 58.86 41.12 56.50
FEAT only w/ High FCs 27.00 51.11 33.30 43.06
FEAT w/o Low FCs 46.82 64.70 41.44 56.64
FEAT w/o Mid FCs 46.37 65.19 38.75 54.67
FEAT w/o High FCs 55.21 68.23 46.45 63.77

BML 35.33 61.49 35.14 52.63
BML only w/ Low FCs 26.03 34.33 35.59 45.59
BML only w/ Mid FCs 27.31 39.61 32.90 50.46
BML only w/ High FCs 26.61 41.96 31.07 42.72
BML w/o Low FCs 27.38 45.03 32.84 48.70
BML w/o Mid FCs 26.88 54.61 34.24 51.33
BML w/o High FCs 33.65 58.79 35.77 53.42

Table C: Coarse-to-Fine Annotated few-shot generaliza-
tion results on tieredImageNet dataset. We train the
model on 20 super-classes in the training set and eval-
uate on the 8 coarse-annotated (Coarse → Coarse) and
160 fine-annotated (Coarse → Fine) testing classes over
tieredImageNet dataset, respectively. The best and second
best results under each setting for each few-shot method are
highlighted as Red and Blue, respectively.

C. Additional Experimental Results

Comparison with frequency- or spatial-based mask. To
investigate the impact of frequency information on mask
generation, we consider generating the mask directly based
on the gradient in the spatial domain. Specifically, we re-
move the frequency branch and generate a spatial mask
based on backbone network Esp. We adopt the same base-
line and achieve 67.24% and 82.82% accuracy under the
5-way 1-shot and 5-way 5-shot settings, respectively. Re-
sults show that adding either spatial- or frequency-mask can
improve the few-shot performance, while we can obtain a
better result with frequency-mask. One possible reason is
that directly masking partial regions of spatial images may
cause discontinuity, affecting model learning.
Combination with more few-shot methods. We also eval-



Test Set on miniImageNet Test Set on CUB

All FCs w/o High FCs only w/ High FCs All FCs w/o High FCs only w/ High FCs

Train Set on miniImageNet 0.5450 0.6223 2.2224 1.6614 1.6842 2.9445
Train Set on CUB 1.8236 1.8011 4.5190 0.0806 0.3803 5.2912

Table D: MMD results for cross-dataset few-shot generalization. The lower MMD value indicates a smaller gap and better
performance.

Test Set on tiered (C) Test Set on tiered (F)

All FCs w/o High FCs only w/ High FCs All FCs w/o High FCs only w/ High FCs

Train set on tiered (C) 0.6133 0.5977 4.1766 1.7659 1.3447 4.0631

Table E: MMD results for coarse-to-fine annotated few-shot generalization. tiered (C) and (F) represent tieredImageNet
datasets with coarse-annotated and fine-annotations, respectively. The lower MMD value indicates a smaller gap and better
performance.

Test Set on Quickdraw

All FCs w/o High FCs only w/ High FCs

Train Set on miniImageNet 2.7887 2.6104 2.4252
Train Set on FS-DomainNet 4.0125 3.4885 3.2707

Table F: MMD results for cross-domain few-shot general-
ization. The lower MMD value indicates a smaller gap and
better performance.

Model miniImageNet

5-way 1-shot 5-way 5-shot

Dynamic [15] 67.76 ± 0.46 82.71 ± 0.31
Dynamic+FGFL 69.40 ± 0.49 84.63 ± 0.36
DeepBDC [14] 67.34 ± 0.43 84.46 ± 0.28
DeepBDC+FGFL 68.62 ± 0.84 85.67 ± 0.61

Table G: Average classification accuracy (%) over
miniImageNet with the ResNet-12 as backbone

uate the effectiveness of the proposed FGFL by integrat-
ing it with additional few-shot methods, including Dynamic
FSL [15] and DeepBDC [14], shown in Table G.
Model Efficiency. We compared the inference time be-
tween few-shot methods w/ and w/o our proposed FGFL,
shown in Table H. The inference time is calculated for a sin-
gle meta-task in a 5-way 1-shot scenario on miniImageNet,
utilizing the ResNet-12 backbone on an NVIDIA RTX
A5000 GPU. Results in Table H indicate that FGFL does in-
deed require additional time to generate masked frequency-
domain images using Grad-CAM to assist spatial-domain
classification. However, in comparison to the results w/o
FGFL (corresponding to the first row in table H), the time
cost introduced by FGFL is relatively minor and acceptable.
Furthermore, FGFL needs additional parameters (a fre-

Method ProtoNet [10] FEAT [16] Dynamic [15] DeepBDC [14]

Infer. Time (s) 0.04 0.04 0.24 0.11

w/ FGFL 0.07 0.07 0.26 0.15

Table H: Inference time (second) for a single meta-task un-
der the 5-way 1-shot setting on miniImageNet.

Query

Support

Figure G: Visualizations of frequency masks of query sam-
ples generated by different support sets.

quency encoder and classifier) as a trade-off to encode fre-
quency information to improve the few-shot classification,
which may potentially constrain the efficiency of FGFL.

Task-adaptive frequency mask. We visualize the fre-
quency mask of query samples generated by different sup-
port sets from the same classes, i.e., 5 selected classes in a
meta-task, shown in Figure G. Results show that frequency
masks can capture more task-specific frequency informa-
tion as additional knowledge and avoid over-fitting to spa-
tial features, leading to further improvements over spatial
masks, aligning with our idea.
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