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1. Cases of Long Text Images

Long text occurs in our daily life frequently. It is a ba-
sic requirement to read long text for STR model. Fig. 1
gives some examples, including website, email address, file
name, random code, compound word, etc.

2. More Illustration on Attention Sharpening

We would like to explain why we use Eq. (15) in the
original paper to sharpen the character attention map.

Usually, the softmax function with temperature is ex-
ploited to sharpen probability distributions. Suppose that
we apply it to our attention sharpening directly, i.e.,
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Note that the exponential function can be converted as
the following mathematically:
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where o(x) is a high-order infinitesimal. If z; and x5 are
two infinitesimals tending to 0, and if 1 < 9, then we
have:
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which means the discrepancy (normalized ratio) between 1
and x5 is reduced after the softmax. In other words, the soft-
max function not only fails to sharpen the attention distri-
bution, but flattens the distribution even more. It is because
+1 in Eq. (2) dominates and dilutes x in the normalization
when z is small. Since 0 < A;Z_)LS < 1, Eq. (1) has the
same problem.

To avoid flattening the attention distribution, we sim-
ply replace the exponential function in softmax (Egs. (3)
and (4)) with e — 1. In this way, Eq. (1) evolves into Eq.
(15) in the original paper. In experiments, we find that Eq.
(15) is more insensitive to o; and achieves better results.
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Figure 1. Examples of long text in TUL.

Table 1. Comparison on MACs. The methods are all tested with
input of size 32 x 128. For LISTER, the number of decoding steps
is setto 12.

Method Params (M) MACs (G)
ABINet [3] 36.7 5.94
MGP-STRyision [0] 85.5 23.7
LISTER-B 49.9 2.69

3. Memory Access Cost

The low memory access costs (MACs) is another advan-
tage of the proposed LISTER, which allows us to use a large
batch size. As shown in Tab. 1, LISTER-B costs far less
GPU memory than the hybrid convolution-Transformer ar-
chitecture ABINet [3] and the fully-Transformer network
MGP [6]. We owe it to the depth-wise convolution in the
feature extractor, the proposed simple neighbor decoder,
and the sliding-window self-attention layer that only takes
aligned character features as input in the proposed FEM.
Besides, the height of the final feature map is 1, which also
matters.

4. Training using Real Dataset

Recently, some works [2, ] trained their models using
real text dataset. To evaluate LISTER more comprehen-
sively, we further extend experiments by using the same real
training dataset as in PARSeq [2]. The 1cycle learning rate
scheduler [5] and Stochastic Weight Averaging (SWA) [4]
are also used during training. The augmentation ways used
in both ABINet [3] and PARSeq [2] are both exploited. The
maximum text length is restricted to 32 to be efficient dur-
ing training, while arbitrary during inference. The number
of classes is still 37 to avoid inconsistence with the way of
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Figure 2. Comparison on length distribution (17-27) between the
real and synthetic training set. The number is in logarithmic.

Table 2. Comparison of models trained using real data. LISTER-
B" is illustrated in Sec. 4.3. of the paper.

Method | CoB [ ArT COCO Uber | AVG
ABINet [3] 959 [ 812 764 715 | 746
PARSeqy [2] || 957 || 83.0 770 824 | 821
LISTER-B 96.4 || 81.8 770 794 | 799
LISTER-B" || 963 || 82.8  78.0  83.1 | 82.6

length calculation.

4.1. Length Distribution Comparison

The real training set has much fewer samples than the
widely-used synthetic dataset (MJ+ST), which is mainly re-
flected on short text. However, the text length in the real has
a wider distribution. There are more long text images in the
real set, as shown in Fig. 2.

4.2. Results

The results of models trained using real data are shown
in Tab. 2. Among non-autoregressive models, LISTER per-
forms the best except on ArT. The gap between LISTER-B
and LISTER-B” indicates that maintaining a proper height
of feature map is necessary for irregular-shape text recogni-
tion.

The comparison on TUL is not appropriate here, since
there are some overlaps between the real training set and
TUL, as pointed in Sec. 4.1 in the paper. Nonetheless, LIS-
TER achieves 88.6% on TUL, which is convincing enough
compared with PARSeq 4 (80.6%).
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