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1. Experimental details
1.1. Training GNeRF

We trained GNeRF [7] using the official codebase1. The
scores of GNeRF in our experiments are overall better than
those reported in VMRF [11], likely because we trained
GNeRF for more iterations. In our experiments, we train
GNeRF for 60K iterations which take 48 hours on a sin-
gle NVIDIA GeForce GTX 1080Ti. We notice that GNeRF
is prone to mode collapse in the adversarial training stage,
i.e., the generator produces the same or similar sets of out-
puts with negligible variety, which is a well-known issue for
GAN-based models [3]. To achieve similar performance re-
ported in GNeRF and VMRF, we train 5 GNeRF models
per prior pose setting and report the results from the best
one selected according to the performance on the validation
set. Specifically, 35% of the training trials (26 out of 75)

1https://github.com/quan-meng/gnerf

suffered from the mode collapse issue on the unordered im-
age collections.

1.2. Test-time optimization for view synthesis

Following the procedure established by prior works [6,
7] for evaluating novel view synthesis, we register the
cameras of the test images using the transformation ma-
trix obtained via Procrustes analysis on the predicted and
groundtruth cameras of the training images; we then opti-
mize the camera poses of the test images with the photo-
metric loss to factor out the effect of the pose error on the
view synthesis quality. In the GNeRF pipeline, the test-time
optimization is interleaved with the training process, so the
total number of iterations depends on the number of train-
ing steps seen for the best checkpoint. In our experiments,
GNeRF runs approximately 4230 test-time optimization it-
erations.

1.3. Qualitative and quantitative comparisons

In the main text, we quote the scores from VMRF where
the results on Hotdog are missing. Here we also train GN-
eRF using the official codebase and report the results in Ta-
ble 1. This allowed us to generate GNeRF results on the
Hotdog scene, and observe the mode collapse reported in
the previous section.

Overall, our method outperforms both GNeRF and
VMRF under an unconstrained pose distribution, while also
being more general – our method works with arbitrary 6
degrees-of-freedom rotations (6DOF), while the baselines
assume upright cameras (2DOF) on the sphere, even when
the range of elevations is not constrained.

2. Supplementary analysis
2.1. Pose synchronization and refinement

Table 2 demonstrates the necessity of our pose synchro-
nization and refinement steps. The pose synchronization
aggregates the local pose estimation from LU-NeRF and
provides a rough global pose configuration, and the pose
refinement step further improves the global poses.

https://github.com/quan-meng/gnerf


Chair Hotdog Drums Lego Mic

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
GNeRF 90◦ 31.30 0.95 0.08 32.00 0.96 0.07 24.30 0.90 0.13 28.52 0.91 0.96 31.07 0.09 0.06
GNeRF 120◦ 28.31 0.92 0.12 25.91 0.92 0.15 22.04 0.88 0.19 23.10 0.86 0.95 25.98 0.16 0.08
GNeRF 150◦ 22.63 0.88 0.22 23.03 0.90 0.24 20.11 0.87 0.21 22.02 0.85 0.93 22.71 0.18 0.12

GNeRF 180◦ (2DOF) 21.60 0.87 0.25 24.57 0.92 0.18 18.94 0.84 0.30 20.48 0.85 0.20 23.80 0.94 0.12
Ours (3DOF) 30.57 0.95 0.05 34.55 0.97 0.03 23.53 0.89 0.12 28.29 0.92 0.06 22.58 0.91 0.08

Table 1. Novel view synthesis on unordered image collection. We trained the GNeRF with the publicly available code. Each GNeRF
variation is described by the assumed elevation range. GNeRF 180◦ is the closest to our method but still has only 2 degrees of freedom
for assuming upright cameras. Our method outperforms the unconstrained GNeRF while being more general for considering arbitrary
rotations with 6 degrees-of-freedom.

Rotation Error [°] Translation Error
Scenes Pose Sync. Pose Refine. Pose Sync. Pose Refine.

Lego 16.50 0.07 0.85 0.00
Chair 20.53 4.24 1.08 0.16

Hotdog 21.06 0.23 1.17 0.01
Drums 14.30 0.05 0.86 0.00

Mic 35.48 0.84 1.90 0.02

Mean 21.57 1.09 1.17 0.04
Table 2. Pose synchronization and refinement. The pose syn-
chronization step provides a rough global pose configuration, and
all camera poses are further optimized during the pose refinement
step. We use unordered image collections in this experiment.

2.2. Case study on Drums

In this section, we take a closer look at the performance
of our model on Drums, the worst-performing scene in Ta-
ble 1. The mean rotation error over the 100 cameras is
12.39◦ (see Table 1 of the main paper). Figure 1 shows the
estimated camera poses juxtaposed with the ground truth
cameras after Procrustes alignment. We can see that there
is a small cluster of poorly posed images. Since Procrustes
finds the optimal least-squares global alignment between
predicted and true camera poses, it is severely affected by
these outlier images. A subtle consequence of this is that
the test time optimization, described in Sec. 1.2, may not
be sufficient to evaluate the novel view synthesis results ac-
curately and quantitatively. Due to the exaggerated mis-
alignment from Procrustes in Drums, we may need to in-
crease the number of iterations in order to converge to a
more accurate viewpoint. Indeed, we find simply increasing
the number of test-time optimization iterations from 100 to
1000 dramatically improves the rendering metrics: PSNR
increases from 14.26 to 23.53, SSIM increases from 0.71 to
0.89, and LPIPS decreases from 0.30 to 0.12.

2.3. Effect of depth regularization

Similar to RegNeRF [9], we encourage the smoothness
of the predicted depth maps and apply a depth regulariza-
tion on small patches. We sample patches rendered from the
cameras whose poses are jointly optimized with the 3D rep-
resentation, while RegNeRF uses groundtruth poses for the
observed views and samples the patches from unobserved

Figure 1. Camera pose predictions on Drums.

Scenes
LU-NeRF LU-NeRF

w/o depth regularization w/ depth regularization

Mean Median Max Mean Median Max
Chair 14.18 13.33 38.26 9.41 4.89 33.05

Hotdog 10.75 9.49 29.41 10.69 7.77 33.29
Lego 10.50 10.08 28.27 5.58 1.33 30.88
Mic 12.88 11.70 25.99 10.27 7.05 30.03

Drum 11.32 10.44 24.10 5.37 2.40 29.27

Mean 11.93 11.08 29.21 8.26 4.69 31.30
Table 3. Effect of depth regularization on the pose estimation.
We report the mean relative rotation error (°) with and without
depth regularization. The relative rotations are computed between
the center camera and its neighbors within a mini-scene. The rela-
tive rotation error (lower is better) is defined as the rotation angle
between the predicted relative rotations and the groundtruth.

viewpoints. We find that such depth regularization is cru-
cial to the success of LU-NeRF. Table 3 shows that incor-
porating the depth regularization significantly improves the
pose estimation accuracy of LU-NeRF – the median rela-
tive rotation errors decrease from 11.08◦ to 4.69◦ while the
mean drops from 11.93◦ to 8.26◦. Even though the maxi-
mum relative rotation error is smaller without the depth reg-
ularization, the Shonan averaging [5] fails to converge to a
reasonable global pose configuration.

2.4. Computational cost

Table 4 presents the computational cost of the proposed
framework. We randomly sample 30 mini-scenes and report
the average training time for LU-NeRF-1 and LU-NeRF-2.
The LU-NeRFs for different mini-scenes are independent



and thus can be trained in parallel. The training of LU-
NeRFs and the global pose refinement with BARF [6] can
be significantly accelerated with some recent advances in
learnable scene representations (e.g. PlenOctrees [10], In-
stantNGP [8]).

Stage Running time

LU-NeRF-1 1.08 hours
LU-NeRF-2 0.89 hours

Pose synchronization 3.18 seconds
Pose refinement 4.40 hours

Table 4. Computational cost. We report the mean time for train-
ing a single LU-NeRF-1, a single LU-NeRF-2, and the final refine-
ment step on an NVIDIA Tesla P100. The pose synchronization
step runs on CPU and has a negligible running time.

3. Implementation details
3.1. Building connected graphs

Given a distance function dist(·, ·), image descriptors
{fi}N and corresponding cameras {Ci}N where i ∈
{0, . . . , N − 1} is the image index and N is the total num-
ber of images, as the first step, we build a minimal spanning
tree (MST) using Kruskal’s algorithm. Each node on the
MST represents a camera and the weight Wij on the edge
that connects camera Ci and Cj is the distance dist(fi, fj)
between the descriptors of image Ii and Ij . To ensure each
mini-scene contains at least K images (K = 5 by default),
we augment the MST by adding nearest neighbors for nodes
that have less than K − 1 connected nodes in the MST. We
also ensure that each edge appears in both mini-scenes cen-
tered at the endpoints of the edge, such that there are at
least two measurements for the relative pose between two
connected cameras. Having multiple measurements allows
for estimating the confidence of the predicted relative poses
and identifying LU-NeRF failures (see Sec. 3.2).

3.1.1 Distance functions

Motivation. We intentionally experiment with simplis-
tic approaches to compute image similarity in our graph-
building procedure since our primary contribution in this
work is the local-to-global pose and scene estimation start-
ing with LU-NeRF on mini-scenes. In practice, depending
on the application context, there are likely different cues or
weak supervision that can be exploited for graph building
(as we do for ordered sequences). We leave it to future work
to explore more sophisticated unsupervised/self-supervised
techniques for building neighborhood graphs.

In our experiments, we tried two different features to
build the connected graph: self-supervised DINO fea-
tures [4] and raw RGB values with ℓ1 distance.

DINO features. We extract semantic object parts by apply-
ing K-means clustering on the image collections [2]. The
number of parts is 10 by default in our experiments. We
build an image descriptor in a similar way as the Histogram-
of-Gradients (HoG). Specifically, we evenly split the part
segmentation maps into 4 × 4 grid and compute a part his-
togram within each cell. We then normalize the histogram
per cell into a unit vector and use the concatenated 16 his-
tograms as the image descriptors. The cosine distance be-
tween these descriptors is used to build the MST and final
graph.
ℓ1 on RGB values. We estimate the distance between two
images as the minimum ℓ1 cross-correlation over a set of
rotations and translations. Formally, we compute

dist(I1, I2) = argmin
t,θ

∑
x

| I1(x)− I2(Rθx+ t) |, (1)

where x is the pixel index, t is in a 5 × 5 window cen-
tered at 0, Rθ is an in-plane rotation by θ and θ ∈ {0, π}.
When the minimum is found at θ ̸= 0, we augment the
input scene with the in-plane rotated image and correct its
estimated pose by θ.

We found that considering the in-plane rotations here is
useful because of symmetries – some scenes of symmetric
objects can contain similar images from cameras separated
by large in-plane rotations. This is problematic for LU-
NeRFs because they initialize all poses at identity. Aug-
menting the scene with the closest in-plane rotations makes
the target poses closer to identity and helps convergence.
Metric selection In experiments with unordered image col-
lections, we used the ℓ1/RGB metric for Lego and Drums,
and the DINO metric for Chair, Hotdog, and Mic. The RGB
metric fails to build useful graphs for Hotdog, Mic and Ship,
while the DINO metric fails for Lego, Drums, and Ship. No
graph-building step is necessary on ordered image collec-
tions since the order determines the graph.

3.1.2 Analysis

Figure 2 presents the MST, the connected graph, and im-
age pairs that are connected in the graph on the Chair scene
from the NeRF-synthetic dataset when using the DINO fea-
tures. Surprisingly, the self-supervised ViT generalizes well
on unseen objects and the learned representations are robust
to viewpoint change (see the last column of Figure 2).

Figure 3 presents an analysis of the connected graphs
built with DINO and RGB features. Both features provide
outlier-free connected graphs on Chair. The graphs built
with DINO contain much fewer outliers on Hotdog and Mic,
while RGB features induce clearer graphs on Drums and
Lego. Both DINO and RGB features produce more outliers
on Ship than other scenes.
Optimal graph vs noisy graph. To analyze the effect of
graph building on the unordered image collection, we build
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Figure 2. Graph built with DINO features on Chair. The mini-
mum spanning tree (left), the connected graph (middle), and sam-
ples of connected image pairs (right). In the right panel, each col-
umn presents two images that are connected on the graph (1st and
3rd row), the corresponding part co-segmentation maps [2] (2nd
and 4th row), and rotation distance between the two views (bot-
tom).

Figure 3. Graph statistics. We compare the rotation distance
between mini-scene neighbors on the optimal graph built with
groundtruth camera poses, the graph built with DINO features, and
the one built with RGB features. For most scenes both DINO and
RGB mini-scenes include outlier images (close to 180◦ distance)
which our pipeline needs to deal with.

an oracle outlier-free connected graph with groundtruth
camera poses. Table 5 compares the performance of our
method with the optimal graphs and noisy graphs built with
DINO/RGB features. Outliers in the connected graph may
hurt the performance of LU-NeRF. Nevertheless, with our
simple graph-building methods based on DINO/RGB fea-
tures, our method outperforms the baselines when they are

not given prior constraints on the camera pose distributions.
We notice that the performance with the optimal graph

is worse than that with the noisy graph on Chair. The “op-
timal” graph minimizes camera distances, but it is not guar-
anteed to be the best choice for LU-NeRF. e.g., issues like
mirror symmetry ambiguity (Sec. ??) can arise more often
when cameras are in close proximity, and there is random-
ness inherent in training neural networks.

Rotation Error [°] Translation Error
Scenes Optimal graph Noisy graph Optimal graph Noisy graph

Chair 4.24 2.64 0.16 0.09
Hotdog 0.23 0.24 0.01 0.01
Lego 0.07 0.09 0.00 0.00
Mic 0.84 6.68 0.02 0.10

Drums 0.05 12.39 0.00 0.23

Table 5. Optimal graphs vs noisy graphs. The outliers in the
noisy connected graph built with DINO/RGB features may hurt
the performance of our method in camera pose estimation. The
clean graph is built from the ground-truth camera poses.

3.2. LU-NeRF architecture and training details

In the training of LU-NeRF, we do not apply the coarse-
to-fine strategy proposed in BARF [6]; we sample 2048 rays
per mini-batch and adopt the learning rate schedule for pose
and MLP parameters from BARF; we remove the positional
encoding and view-dependency, and use a compact 4-layer
MLP to reduce the memory cost and speed up the training.
We set the initial camera poses to identity. We have ex-
perimented with random initialization around identity but
observed no significant difference. We terminate the train-
ing of LU-NeRF-1 if the average change of the camera ro-
tations in a mini-scene is less than 0.125◦ within 5k itera-
tions. We train LU-NeRF-2 for 5k iterations with frozen ini-
tial poses and then jointly optimize camera poses and neural
fields for 45k iterations. We apply depth regularization on
small patches (2 × 2 by default) in both LU-NeRF-1 and
LU-NeRF-2.

3.3. Synchronization and refinement details

In the pose synchronization step, we apply the off-the-
shelf Shonan averaging2 [5], which solves a convex relax-
ation of the problem described in Eqn. (1) of the main text,
while iteratively converting it to higher dimensional special-
orthogonal spaces SO(n) until it converges. We then opti-
mize the translation with fixed camera rotation.

The input to the Shonan averaging is the relative pose es-
timations from LU-NeRF and the confidence of these pose
estimations. Each pair of cameras may have multiple mea-
sures of the relative poses, as each camera may appear in
multiple mini-scenes. We apply a simple heuristic to pick
one measure from these multiple candidates: given two

2https://github.com/dellaert/ShonanAveraging

https://github.com/dellaert/ShonanAveraging


Bike Chair Cup Laptop Shoe Book
Rotation 24.41 5.61 13.41 23.13 19.36 45.78
Translation 4.09 1.20 0.63 1.79 0.82 1.43

Table 6. Camera baselines. We report the average rotation [°] and
translation distance between all camera pairs in the sequential data
sampled from the Objectron datatset [1].

cameras Ci and Cj and their renderings Ii and Ij , where
i < j, if the PNSR of Ii in the mini-scene centered at Ci

is higher than the PSNR of I ′i in the mini-scene centered at
Cj , we use the pose estimation from the mini-scene i as our
relative pose estimation between camera Ci and camera Cj .

To resolve the scale ambiguity across different mini-
scenes, we first scale each mini-scene so that the MST
edges connecting different mini-scenes are scale-consistent
(MST construction is described in Sec. 3.1). Specifically,
we establish a reference scale by fixing it in one mini-scene
and propagating it to others through the MST. We focus
on edges linking mini-scene centers and rescale the mine-
scenes so that overlapping edges share a consistent scale.

We then obtain the translation by solving a linear system
tj−ti = Ritij where Ri is the rotation of camera i from the
Shonan method and tij is the relative translation between
camera i and j from LU-NeRF. Similar to the relative ro-
tations, each pair of cameras may have multiple measures
of the relative translation. We use the same heuristic de-
scribed above to pick one from the multiple measures. The
translation optimization has also been implemented in the
off-the-shelf Shonan averaging.

In the global pose refinement stage, we closely follow the
default setting of BARF [6] which jointly trains the MLP
and refines the poses for 200k iterations with a coarse-to-
fine positional encoding strategy.

We utilize the camera visualization toolkit from
BARF [6] in our main paper and the supplementary ma-
terial.

3.4. Dataset release and open sourcing.

We will release the newly ordered Blender sequences
and open-source the code on our project website3.

For the sequential data sampled from the Objectron
dataset [1], Table 6 reports the average rotation and transla-
tion distance between all camera pairs as a reference for our
quantitative evaluations in Table 6 in the main text.
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