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1. Introduction

In this document, we provide supplementary material for
our paper “PRIOR: Prototype Representation Joint Learn-
ing from Medical Images and Reports”. We first provide
pre-training details. Then we present details of fine-tuning
on different downstream tasks. Finally, we perform de-
tailed analysis of each key component in PRIOR, including
sentence-wise prototype memory bank (SPB), local align-
ment module (LAM), and cross-modality conditional re-
construction (CCR).

2. Pre-training Details

2.1. Data Preprocessing

We pre-train the proposed PRIOR on the MIMIC-CXR-
JPG dataset. We remove all lateral-view images and im-
ages whose corresponding reports have fewer than four sen-
tences. Finally, we end up with 182475 image-report pairs.

For image preprocessing, we first normalize the intensi-
ties of all images into [0, 1] and then calculate their mean
(0.4755) and standard deviation (0.3011). Z-score normal-
ization is employed. All images are resized to 224 × 224
before being fed into a model of interest.

For report preprocessing, we utilize all sentences from
the Findings and Impression sections. We employ BioClin-
icalBERT’s tokenizer [1] implemented in the Transformer
library [11] to tokenize each report into a sequence of to-
kens. We then pad all reports to have the same length of
256 tokens.
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2.2. Single-modality Encoder Architecture

We employ ResNet50 as the image encoder, which is
implemented in the TorchVision library [6] and gets pre-
trained on ImageNet. For global representation, we ap-
ply an attention pooling layer to obtain a 2048-dimensional
vector. For local representation, we take the feature map
f ∈ R7×7×2048 of the last layer of ResNet50.

We adopt BioClinicalBERT [1] as the report encoder,
which is implemented in the Transformer library [1] and
gets pre-trained on the MIMIC-CXR dataset. We take the
hidden state from the last layer as the token-level represen-
tation. After that, we gather all token representations in
the same sentence via self-attention pooling to serve as the
sentence-level representation qi ∈ RMi

R×768, where M i
R is

the number of sentences in the i-th report. Finally, we use an
additional self-attention pooling layer to obtain the global
representation over all sentence-level representations.

To embed linguist and visual representation into the
same dimension, we attach four independent MLPs to em-
bed both local and global report/image representation into
an embedding space of dimension 768.

2.3. Cross-modality Interaction Architecture

The cross-modality interaction architecture mainly con-
tains three components, namely sentence-wise proto-
type memory bank, cross-modality alignment, and cross-
modality conditional reconstruction.

Sentence-wise prototype memory bank. Each proto-
type in SPB is initialized with the Standard Gaussian dis-
tribution and L1 normalization. For stable convergence, the
temperature coefficient in Gumbel-softmax reparameteriza-
tion decays from 0.9 to 0.01.
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Cross-modality alignment. We employ the contrastive
loss implemented in PyTorch-Lightning [3] as the global
alignment loss and the local image-to-report alignment loss.
We adopt the loss proposed elsewhere [2] as the local
report-to-image alignment loss.

Cross-modality conditional reconstruction. We adopt
five up-sampling blocks for image reconstruction. Each
block consists of two convolution operations with a size of
3 × 3 and a stride of 1 × 1, followed by a ReLU activation
function and a batch normalization layer. For report recon-
struction, we adopt a decoder with 6 BERT layers in the
same setting as that of BioClinicalBERT [1]. We employ
the bipartite matching algorithm to match the predicted pro-
totypes with the ground-truth ones, which is implemented in
the SciPy library [10].

2.4. Training Details

We train PRIOR for 100 epochs on NVIDIA A100 GPUs
with a batch size of 128. The total training process consists
of three stages: (1) In stage 1, we train the cross-modality
alignment module for 20 epochs, which is directly trained
on sentence-wise representation without SPB. (2) In stage 2,
we jointly train SPB and the cross-modality alignment mod-
ule for 30 epochs. (3) In stage 3, we jointly train SPB, the
cross-modality alignment module, and the cross-modality
conditional reconstruction module for 50 epochs. We use
the Adam optimizer [5] with a learning rate of 1e − 5 and
a weight decay of 1e − 6. A cosine annealing scheduler
is employed to adjust the learning rate. We employ grid
search to identify the optimal hyper-parameter combination
that performs the best on downstream tasks.

3. Fine-tuning Details
We evaluate the proposed PRIOR on five downstream

tasks, namely supervised classification, zero-shot classifi-
cation, image-to-text retrieval, semantic segmentation, and
object detection. For each task, we employ grid search
to identify the best-performing hyper-parameters. We here
only provide the specific hyper-parameters for VLP meth-
ods since they are our essential objects of interest; all VLP
methods share the same set of hyper-parameters. For hyper-
parameters employed in non-VLP methods, please refer to
our source code for details. The intensity of each image is
normalized into [0, 1] via Z-score normalization using the
mean and standard deviation of the training set. We resize
all images into 224×224. A cosine decay scheduler is used
to adjust the learning rate.

3.1. Supervised Classification

For the downstream task of supervised classification,
we fine-tune the image encoder with an additional fully-
connected layer on the RSNA dataset, the SIIM Pneu-
mothorax dataset, and the CheXpert dataset. The hyper-

Table 1. Hyper-parameter details for supervised classification.

Dataset
Training Data

Ratio Learning Rate Epochs Batch Size

RSNA
100% 1e− 4 5 64
10% 1e− 4 5 64
1% 1e− 4 10 64

SIIM
100% 1e− 5 5 64
10% 1e− 5 20 64
1% 1e− 4 20 64

CheXpert
100% 1e− 6 5 256
10% 1e− 5 5 256
1% 1e− 4 5 256

parameters of all VLP methods are listed in Table 1. Since
each dataset involves either binary classification or multi-
label classification, we use the binary cross-entropy loss as
the loss function. The model with the highest AUC-ROC on
the validation set is selected for testing.

3.2. Zero-shot Classification

We conduct zero-shot classification on the CheXpert
5x200 dataset, which is based on the similarity between
manually designed prompt sentences and images. We gen-
erate the prompt simply through using “X is observed”,
where X represents the name of a specific disease. For gen-
eralization, we do not use any ensemble method. We cal-
culate the similarity between the prompt and the image via
the sum of the global alignment loss and the local cross at-
tention weight. Note that before summing the two scores,
we employ the softmax function to normalize each of them
into [0, 1].

3.3. Image-to-text Retrieval

Similar to zero-shot classification, we conduct image-to-
text retrieval on the CheXpert 5x200 dataset, which is based
on the similarity between queried reports and images. Note
that because CheXpert does not have public reports, we
sample 1000 exclusive reports from MIMIC-CXR dataset
for each of 5 diseases.

3.4. Semantic Segmentation

We adopt U-Net [8] as the segmentation network. Dif-
ferent from the original U-Net, we employ U-Net equipped
with a ResNet50 backbone, which is implemented in the
Segmentation Models Pytorch library [4]. We present the
hyper-parameter details in Table 2. The Dice loss is used for
training, which performs better than either the cross-entropy
loss or a combination of the two losses according to our ex-
perimental results. The model with the highest Dice score
on the validation set is selected for testing.

3.5. Object Detection

We adopt Faster-RCNN [7] as the object detection net-
work. The training and evaluation scripts are based on
Pytorch-Lightning Flash [3]. The hyper-parameter details



Table 2. Hyper-parameter details for semantic segmentation and
object detection.

Dataset
Training Data

Ratio Learning Rate Epochs Batch Size

SIIM
Segmentation

100% 1e− 3 50 128
10% 1e− 4 50 128
1% 1e− 4 100 16

RSNA
Detection

100% 5e− 5 5 16
10% 1e− 4 20 16
1% 1e− 4 5 16

PRIORPRIOR w.o. SPB

Figure 1. The t-SNE visualization comparison between the
sentence-level embeddings without and with SPB pre-training.

are also tabulated in Table 2. We follow the original Faster-
RCNN setting in terms of the loss function [7]. The model
with the highest mAP (0.5:0.95) on the validation set is se-
lected for testing.

4. Component Analysis
In this section, we perform further analysis on each com-

ponent of PRIOR, including SPB, LAM, and CCR.

4.1. Analysis on SPB

To demonstrate the effectiveness of SPB, we utilize sev-
eral synonymous sentences to demonstrate the querying dis-
tribution over the memory bank, as shown in Figure 2. It
is worth noting that SPB highlights the most relevant proto-
type in a sharp distribution over SPB, which means that SPB
can effectively capture the high-level semantic information
of the sentence of interest.

Furthermore, we visualize the sentence-wise embed-
dings via t-SNE [9] on 1000 randomly selected sentences
from MIMIC-CXR in Figure 1. Apparently, the sentence-
wise embeddings with SPB pre-training are more compact
and well-separated. In other words, SPB significantly im-
proves the quality of the sentence embeddings, which ben-
efits cross-modality interaction.

4.2. Analysis on LAM

In Figure 3, we visualize the attention weights of LAM
on CheXpert 5x200. We first generate a sentence in the
form of “X is observed”, where X represents the name of a
specific disease. Then the cross-modality attention map is
obtained by the proposed LAM over the generated sentence
and the corresponding image. Clearly, LAM can effectively
localize the affected region of the given disease.

Table 3. The influence of the activation functions in LAM.
Activation function CheXpert Classification SIIM Segmentation
Softmax 86.01 ± 0.68 45.65 ± 1.31
Sigmoid 86.16 ± 0.64 46.01 ± 1.03

Unlike natural image captioning, some sentences in
medical reports are irrelevant to medical images, such as
“AP single view of the chest has been obtained”. Soft-
max assigns a constant probability summing up to 1 when
aligning sentence with image, resulting in an average rep-
resentation of image and failing to represent local features
precisely. Instead, Sigmoid assigns probability to each
pixel separately. Our experiments demonstrate the effec-
tiveness of the Sigmoid function in cross-modality atten-
tion, as shown in Table 3.

4.3. Analysis on CCR

CCR is a key component in our PRIOR, which can effec-
tively capture fine-grained cross-modality information. We
visualize representative reconstructed images from the CCR
module in Figure 4. We find that the reconstructed images
can well maintain the low-level information that is related
to the report descriptions. Meanwhile, the reconstructed im-
ages successfully reveal the severity of the corresponding
disease as well as the lesion locations.

For sentence prototype reconstruction, we compare the
query distribution of the original report and the predicted
distribution from CCR in Figure 5. The distribution is ob-
tained from all sentences in the report of interest. We ob-
serve that the predicted distribution is similar to the original
distribution, which demonstrates that the CCR module can
effectively capture cross-modality information and recon-
struct sentence prototypes.

References
[1] Emily Alsentzer, John R Murphy, Willie Boag, Wei-Hung

Weng, Di Jin, Tristan Naumann, and Matthew McDermott.
Publicly available clinical bert embeddings. arXiv preprint
arXiv:1904.03323, 2019. 1, 2

[2] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
15750–15758, 2021. 2

[3] William Falcon et al. Pytorch lightning. GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning, 3,
2019. 2

[4] Pavel Iakubovskii. Segmentation models pytorch.
https://github.com/qubvel/segmentation_
models.pytorch, 2019. 2

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2
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Figure 2. Representative examples demonstrating that SPB can cluster sentences with similar information. The horizontal axis represents
the sentence index in the memory bank, and the color bar quantifies the querying score.
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Figure 3. Representative examples of cross-modality attention maps related to different diseases.
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Figure 4. Representative examples of reconstructed images from CCR.
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Figure 5. Representative examples of conditional reconstruction for sentence-wise prototypes. From left to right, the first column shows
the original reports, the second column shows the original images, the top panel of the third column shows report distributions over the
memory bank, and the bottom panel of the third column shows the predicted sentence representation distributions. Note that the top and
bottom panels of the third column are very similar to each for all provided examples.




