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—– Supplementary Material —–

In this supplementary material, we further describe ad-
ditional details to complement our proposed reconfigurable
graph model. Firstly, the calculation of the projection func-
tion is detailed in Section A, followed by tracklet ID assign-
ment steps in Section B. Afterward, our network architec-
ture and model complexity are described in Section C. Sec-
tion D shows the effectiveness of post-processing module.
Additionally, we provide visualization of our graph model
to better realize two association stages in Section E. Quali-
tative results are shown in Section F to explain how we fix
the fragmented tracklet problems. Lastly, we demonstrate
the proposed ReST tracker in the attached link.

A. Calculation of Geometry Position
The geometry position of node vi can be obtained by

projecting its estimated foot point from the camera view to
a common ground plane via a projection function. The pro-
jection function Pcvi

is based on camera calibration param-
eters and derived from perspective projection:

ximg = K[R t]xworld = Pxworld, (1)

where ximg and xworld denote the positions in 2D image
and 3D world represented in homogeneous coordinates, re-
spectively, and K is the intrinsic matrix, with rotation ma-
trix R and translation vector t determined by the extrinsic
parameters. Assuming z = 0 as the common ground plane,
the 3×4 projection matrix P is reduced to be a 3×3 homog-
raphy matrix H . Therefore, the position pvi on the ground
plane can be calculated by

pvi = H−1ximg, (2)

where ximg is the person’s foot point, estimated by the po-
sition, width, and height of the bounding box.

B. Tracklet ID Assignment
In this section, we explain the details of tracklet ID as-

signment steps. In the spatial graph, one node vi repre-
sents one detection, including bounding-box location bvi
and camera ID cvi . In Graph Reconfiguration stage, we save
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Figure 1: Tracklet ID Assignment. (a) In Graph Recon-
figuration, we aggregate a list of bounding-boxes and cam-
era IDs from its original connected component into a node
(black solid node). (b) After Temporal Association, each
node at time t and its associated detections will inherit ID
from the previous node or be assigned to a new ID.

all bounding-boxes and their respective camera IDs within
the same connected component of spatial graph GS

t , and
then aggregate them into a node of GT

t (Figure 1a). The
last step of post-processing in Temporal Association is as-
signing tracklet ID. As shown in Figure 1b, if an aggregated
node at the current frame is connected to a previous node,
all of its detection, i.e. bounding-box and camera ID, will
inherit the same ID of that previous node. Otherwise, it
will be assigned a new ID if there is no other previous node
connected. Therefore, we can obtain predicted tracklet IDs
corresponding to every detection at the current frame to ac-
complish inference.

C. Network Details
Following [4], our ReST model contains five trainable

MLPs (Table 1, Figure 2). fv
FE(·) and fe

FE(·) serve as
initial feature encoders for nodes and edges to project the
original features, e.g. appearance feature and geometry po-
sition, into a high-dimensional feature space. fv

ME(·) and
fe
ME(·) are used in MPN. We encode the feature first, and

then pass the message and update it. With the softmax layer
appended at the end, fCLS(·) outputs a confidence score
between 0 and 1 from the enhanced edge feature.

Our graph model has about 154K parameters in to-



Network Layer Input Output Parameters

fv
FE(·)

FC + ReLU 512 / 514 128 69K / 70KFC + ReLU 128 32

fe
FE(·)

FC + ReLU 4 / 6 8 94 / 110FC + ReLU 8 6

fv
ME(·)

FC + ReLU 38 64 4576FC + ReLU 64 32

fe
ME(·)

FC + ReLU 70 32 2470FC + ReLU 32 6

fCLS(·)
FC + ReLU 6 4 33FC + softmax 4 1

Table 1: Details of each MLP network. The number before
slash represents spatial graph, while the number behind rep-
resents temporal graph.

(a) Encoder (b) Classifier

Figure 2: MLP network architecture. (a) fv
FE(·), fe

FE(·),
fv
ME(·), fe

ME(·) have the same structure. (b) fCLS replaces
ReLU with softmax to output a confidence score of each
edge between 0 and 1.

Setting IDF1↑ MOTA↑
w/o splitting in both graphs 80.5 92.8
w/o splitting in spatial graph 84.3 92.4

w/o splitting in temporal graph 85.5 95.5
Ours (w/ full post-processing) 91.6 97.0

Table 2: Ablation of post-processing module on Wildtrack.

tal, which is a considerably light model compared with
attention- or Transformer-based models [2, 5]. This makes
ReST more suitable for real-world application scenarios.

D. Analysis on Post-processing Module

To validate the effectiveness of our post-processing
module, we perform another ablation study on the post-
processing module. In Algorithm 2, both spatial and tem-
poral graphs perform pruning and splitting, while assigning
tracklet ID will only perform in the temporal graph. Prun-
ing and assigning ID are necessary and cannot be omitted,
since pruning removes the edges and divides into several
connected components representing different objects, and
assigning ID is to output tracklet ID for evaluation. In prac-
tice, splitting is performed in both graphs to ensure that each
connected component follows the specific constraints. As
shown in Table 2, there is a significant decline in both met-
rics without the splitting in any graph or in both graphs.

(a) Spatial Graph (b) Temporal Graph

Figure 3: Graph visualization. Both graphs after their as-
sociation stage are depicted. (a) In the spatial graph, each
node represents one detection, colored by ground-truth la-
bel. (b) In the temporal graph, blue nodes represent aggre-
gated nodes in temporal graph at previous frame, while red
nodes represent aggregated nodes in spatial graph at current
frame.

E. Graph Visualization
To better realize our graph model and prove the model

robustness, we demonstrate the graph after the association
stage in Figure 3. In Figure 3a, one node, colored by
ground-truth label, represents one input detction at current
frame. Our spatial graph perfectly associates every people
across different views even in a crowded scene. In other
words, we will not lose the information of occluded people,
leading to fewer fragmented tracklets and ID switch errors.
In Figure 3b, one node represents a list of detections that are
aggregated in the Graph Reconfiguration stage. The con-
nected nodes mean successful association between different
frames, while the single nodes mean people who have just
entered or left the scene. With the Graph Reconfiguration
module, our view-invariant temporal graph becomes sim-
ple and focuses on associating nodes from different frames
only.

F. Qualitative Results
In this section, we show more cases fixing the frag-

mented tracklets problem due to occlusion in certain views.
With the design of two-stages association, our ReST model
leverages spatial consistency, recovering ID from different
views. Specifically, an occluded person is usually visible in
other views. We take advantage of this to fix the potential
fragment and ID switch problems. As shown in Figure 4,
no matter the short-term or long-term occlusion, we steadily
track every people and do not lose their tracklet IDs.

G. Demonstration Video
We demonstrate our ReST tracker on Wildtrack [1] at

https://github.com/chengche6230/ReST. To
show spatial and temporal consistency, we simultaneously



(a) PETS09

(b) CAMPUS - Garden1

Figure 4: Qualitative results on PETS09 [3] and CAMPUS [6] to show our model’s ability to recover fragmented tracklets.
(a) ID:2 (red box) is occluded at time 723 to 724 in the second view, while he is still clearly visible in the first view. ID:0
(green box) is occluded at time 725 in the first view, but visible in the second view. Both cases are recovered and kept their
IDs via our two-stages association. (b) Long-term consistency: ID:0 (yellow box) is occasionally occluded by people at time
2462 and 2622. Our model is able to maintain her ID in the long-term. As shown in the figure, we correct her ID at time
2480 and 2639.

show all frames from the 7 camera views and a bird’s-eye
view of their foot point. With the effective two-stages asso-
ciation, our predicted tracklet IDs are stable and consistent
across views and frames.
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