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S1. Derivations
S1.1. Proof of Theorem 1

Proof. Suppose a noisy observation 5: = x +n € RY where n ~ N(0,X) has the zero mean and covariance ¥, and
x ~ p(x). Then the density p(x ) is p(z) = [ N(x, Z)p(x)dx. The gradient of p(x) is
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Multiplying both sides of (S1) by ﬁ gives
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where E,,(|3) () is the conditional mean for noisy input & corrupted by structured Gaussian noise. The proof is completed.
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S1.2. Score priors for the optimization of KL(q(x)||p(x))

Assume variational posterior ¢(z) = Hz 1./\/ (p,z, 0?), then we have
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where @, = p+ o © €,e ~ N(0,T), and ® denotes element-wise multiplication.
Note that log p(a,, ) is not directly computable, but its derivatives can be obtained with the help of score functions from
MMSE Non- ¢.7.d Gaussian denoisers, that is
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We can then replace the score in (S4) and (S5) with
1 1.
Va, logp(xm) = (E(X|zm) — Tm) © s ~ (G(xm) —Tm) © s eR (S6)
where E(X |z, ) is the conditional expectation given noisy input .,, and G(x,,, ) is the output of a MMSE Non-i.i.d Gaussian
denoiser G, which serves as the approximation of E(X |z, ).

S1.3. Derivations of the complete ELBO objective and its components

The KL divergence between the trivial variational posterior ¢(X, ®, Z,Q2) and the true posterior p(X, ®, Z, Qly) is
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ELBO

As KL(¢(X,®,Z,Q)||p(X, P, Z,Qly)) > 0 and log p(y) is not computable, we instead maximize the Evidence Low
Bound (ELBO) in Eq. (S7). KL(¢(X, ®, Z,Q)||p(X, ®, Z, Q) in the ELBO can be further decomposed into
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with each component derived as:
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where I'(-) and v (-) denotes gamma function and digamma function, respectively.
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where Zp;(-) is the normalizing parameter of Dirichlet distribution.
Finally, £1 = —Eq(x,,2,0)(logp(y| X, ®, Z,(2)) is derived as
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Note that —C'in £; and C in L5 cancel out, so we simply ignore them in the main paper and the subsequent optimization.
S2. More details and results of ScoreDVI
S2.1. Network architectures and optimization

The four networks for representing the parameters of variational posteriors, i.e., X-net, ®-net, Z-net and (2-net, are
presented in detail in Figure S1. In practice, there are some restrictions on these variational posterior parameters. That is,
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Figure S1: Architectures of four CNNG, i.e., X-net, ®-net, Z-net and 2-net. X -net bases on Unet, while the other three nets
build upon the DnCNN with 5 convolution layers.

To obtain ©, we output the logarithms of afk, Qik, Bik, and cZik using the four networks. We then obtain their actual values
by applying exponential operations. As for 7z, we apply the softmax operation channel-wise to the output of Z-net. This
ensures that 7;;, > 0 and that Zszl i = 1.

Note that, we do not explicitly compute 7;xEq(,,) log p(zx) in Lo but derive its derivative with respect to p;, and afk
using score priors as discussed in the main paper. Note that no gradient of 7y is returned from m;xEg(z,,) log p(x;). Hence,
we detach 7r;;, from this term and replace it with ;5 .detach E () log p(;1) during optimization.

S2.2. Denoising process and uncertainty quantification

The denoising process of our method is illustrated in Figure S2. Importantly, our method provides a natural way to
estimate the uncertainty of the denoised image, which is particularly relevant in safety-critical scenarios. Specifically, our
method estimates the variance of the posterior image distributions, denoted by 2. As shown in Figure S2, a2(t = 400)
reflects the degree of uncertainty in the final restored image, especially the edges around the fine details.

Optimization process

Noisy input
t=1 t=20 t =40 t =100 t =200 t =300 t =400
Figure S2: The denoising process of our ScoreDVI for real-world noise removal.

v §




S3. Image-wise fusion strategy
We consider the likelihood function as
(Y| X, P, w) = Zwk/\/ @, diag(¢, )~ Zwk =1 (S14)
k=1

where w is the mixing vector that combines K Gaussian components. Eq. (S14) can be equivalently expressed as
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k=1 k=1
which allows modeling the image prior and the variational image posterior conditioned on 2 as
K
p(X|z) = Hp 9(X|z) = HN (b1, 07)™q H (S16)
k=1 k=1

Therefore, the mean of variational image posteriors is ft = Zszl Tk 1, Which is the image-wise fusion of different g4,



S4. More visual comparisons
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Figure S3: More visual comparisons of our method against other single image-based denoising methods in SIDD validation.
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Figure S4: More visual comparisons of our method against other single image-based denoising methods in FMDD dataset.
PSNR/SSIM are evaluated on the whole image. The noisy patch is fromThe noisy patch is from WideField BPAE_B_1.
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Figure S5: Visual comparisons of our method against other single image-based denoising methods in CC dataset.
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Figure S6: Visual comparisons of our method and other dataset-based denoising methods in SIDD validation dataset.
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Figure S7: Visual comparisons of our method and other dataset-based denoising methods in FMDD dataset.
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Figure S8: Visual comparisons of our method and other dataset-based denoising methods in PolyU (first row) and CC (second
row) dataset.
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