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This appendix is structured as follows:

• We first provide implementation details of our tempo-
ral propagation network (Section A).

• We then analyze the class-agnostic training data of the
temporal propagation network (Section B).

• After that, we list additional details regarding our ex-
perimental settings and results (Section C).

• Next, we provide results on the small-vocabulary
YouTube-VIS [35] dataset for reference (Section D).

• Lastly, we present qualitative results (Section E).

A. Implementation Details of Temporal Propa-
gation

A.1. Overview

Recall that the temporal propagation model Prop(H, I)
takes a set of segmented frames (memory) H and a query
image I as input, and segments the query frame with the
objects in the memory. For instance, Prop ({I1,M1}, I2)
propagates the segmentation M1 from the first frame I1 to
the second frame I2. The memory H is a compact repre-
sentation computed from all past segmented frames.

In our implementation, we adopt the design of the inter-
nal memory H from the recent Video Object Segmentation
(VOS) approach XMem [6]. VOS algorithms are initial-
ized by a first-frame segmentation (in our case, the first in-
clip consensus output), and segment new incoming query
frames. XMem is an online algorithm that maintains an in-
ternal feature memory representation H. For each incoming
frame I , it computes a query representation which is used
to read from the feature memory. It then uses the memory
readout F to segment the query frame. The segmentation
result (Prop(H, I)) is used to update the internal represen-
tation H. With an internal memory management mecha-
nism [6], this design has a bounded GPU memory cost with
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respect to the number of processed frames which is suitable
for processing long video sequences.

We refer readers to [6] for details regarding XMem. We
describe core details below for completeness. We make a
few technical modifications to XMem to increase robust-
ness in our generalized setting, which we also document be-
low. We provide the full code at hkchengrex.github.
io/Tracking-Anything-with-DEVA.

A.2. Network Architecture

The temporal propagation network consists of four net-
work modules: a key encoder, a value encoder, a mask de-
coder, and a Convolutional Gated Recurrent Unit (Conv-
GRU) [9].

The key encoder, implemented with a ResNet-50 [12],
takes an image as input and produces multi-scale features
at the first (stride 4), second (stride 8), and third (stride 16)
stages. The fourth stage is discarded. The feature in the
third stage is projected to a ‘key’, which is used for querying
during memory reading. After segmentation, if we decide
to add the segmented query frame into the memory H, we
will re-use this ‘key’ in the memory.

The value encoder, implemented with a ResNet-18 [12],
takes an image and a corresponding object mask as inputs
and produces a ‘value’ representation as part of the mem-
ory. We discard the fourth stage and only use the stride-16
output feature in the third stage. Objects are processed in-
dependently (done in mini-batches during inference).

The mask decoder takes the memory readout F and
multi-scale skip connections from the key encoder as inputs
and produces an object mask. It consists of three upsam-
pling blocks. Each upsampling block uses the output from
the previous layer as input, upsamples it bilinearly by a fac-
tor of two, and fuses the upsampled result with the skip con-
nection at the corresponding scale with a residual block with
two 3× 3 convolutions. A 3× 3 convolution is used as the
last output layer to generate a single-channel (stride 4) logit
and bilinearly upsamples it by four times to the original res-
olution. Similar to the value encoder, objects are processed
independently, which can be done in mini-batches during
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inference. Soft-aggregation [23] is used to combine logits
for different objects as in [6].

The Convolutional Gated Recurrent Unit (Conv-
GRU) [9] takes the last hidden state and the output of every
upsampling block in the mask decoder as input and pro-
duces an updated hidden state. 3× 3 convolutions are used
as projections in the Conv-GRU.

Our Modifications. Firstly, in XMem [6], the
1024-channel third-stage feature from the key encoder
is directly concatenated with the memory readout for
mask decoding. For efficiency, we instead first project the
1024-channel feature to 512 channels with a 1 × 1 con-
volutional layer before concatenating it with the memory
readout. Secondly, in each upsampling block of the mask
decoder, XMem uses a 3× 3 convolution to pre-process the
skip-connected feature. We replace it with a 1× 1 convolu-
tion. Moreover, XMem [6] and prior works [23, 8] take the
image, the target mask, and the sum of all non-target masks
(excluding background) as input for the value encoder. We
discard the ‘sum of all non-target masks’ as we note that
it becomes uninformative when there are many objects in
the scene – typical in open-world scenarios. We notice a
moderate speed-up (22.6→25.8 FPS in DAVIS-2017 [3])
from these modifications.

A.3. Feature Memory

Representation. The feature memory consists of three
parts: a sensory memory, a working memory, and a long-
term memory. The sensory memory is represented by the
hidden state of the Conv-GRU and contains positional in-
formation for temporal consistency that is updated every
frame. Both the working memory and the long-term mem-
ory are attention-based and contain key-value pairs. The
working memory is updated every r frames and has a max-
imum capacity of Tmax frames. During each update, the
‘key’ feature from the key encoder and the ‘value’ feature
from the value encoder will be appended to the working
memory after segmentation of the current frame. When the
working memory reaches its capacity, the oldest Tmax−Tmin
frames will be consolidated into the long-term memory.
Please refer to [6] for details.

Memory Reading. The last hidden state of the
Conv-GRU is used as the memory readout of the sen-
sory memory. For the working and long-term memory,
we compute a query from the query frame and perform
space-time memory reading [23] to read from both types
of memory. For spatial dimensions H,W , the memory
readout for the sensory memory is Ch × H × W and the
memory readout for the working/long-term memory is
Cv ×H×W . In XMem, Ch = 64 and Cv = 512 and these
two features are concatenated together as the final memory
readout F.

Our Modifications. For better temporal consistency, we
expand the channel size Ch of the sensory memory to
Ch = Cv = 512. For efficiency, we use ‘addition’ in-
stead of the original ‘concatenation’ to fuse the memory
readout from the sensory memory with the working/long-
term memory. Besides, we supervise the sensory memory
with an auxiliary loss – a 1 × 1 convolution is applied to
the sensory memory to produce the weights and biases of
a linear classifier on the stride 16 image feature (from the
key encoder) for mask prediction. Cross-entropy loss with
a weight of 0.1 is applied on this predicted mask and the
network is trained end-to-end.

A.4. Inference Hyperparameters

Following [6], the sensory memory is updated every
frame. A new memory frame is added to the working mem-
ory every r-th frame. We synchronize r with our in-clip
consensus frequency, such that every in-clip consensus re-
sult is added to the working memory. Following the de-
fault hyperparameters in [6], we set Tmax = 10, Tmin = 5,
the maximum number of long-term memory elements to be
10, 000, and use top-k filtering [7] with k = 30.

A.5. Training

XMem is first pretrained on static image segmentation
datasets [29, 31, 38, 16, 5] by synthesizing small video clips
of three frames with affine and thin-spline deformations. It
is then trained on two video datasets: YouTubeVOS [34]
and DAVIS [24] by sampling clips of length eight.
Our Modifications. We make three major modifications
to the training process for better robustness:

1. We introduce the more challenging OVIS [25] data
into training as we find models have already saturated
and produced almost perfect segmentation results on
DAVIS and YouTubeVOS during training.

2. We use a ‘stable’ data augmentation pipeline which
leads to better temporal consistency. Current state-
of-the-art data augmentation pipelines use aggres-
sive augmentation, applying different rotations [6] or
crops [36] to frames within the same sequence. This
encourages an invariant appearance model but harms
the learning of temporal information. We instead use
the same rotation and crop augmentation for a video
sequence. Figure S1 visualizes the difference.

3. We clip the norm of the gradient at 3.0 during training.
We find that this leads to faster convergence and more
stable training.

We use a batch size of 16, the same loss function (hard-
mining cross-entropy loss with a warm-up and soft DICE
loss) as XMem [6], and the AdamW [20] optimizer. Dur-
ing pre-training, we use a learning rate of 2e-5 for 80,000
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Figure S1. AOT [36] and XMem [6] use different crops and rotations within a sequence respectively. We fix both within a sequence to
encourage the learning of positional information.

iterations. During main training, we use a learning rate of
1e-5 for 150,000 iterations with a learning rate decay of 0.1
at the 120,000-th iteration and the 140,000-th iteration.

A.6. Video Object Segmentation Evaluation

We compare our temporal propagation model with state-
of-the-art methods on three common video object segmen-
tation benchmarks: DAVIS-2017 validation/test-dev [24],
YouTubeVOS-2019 validation [34], and MOSE valida-
tion [10]. Table S1 tabulates our results. We resize all
input such that the shorter side is 480px and bilinearly up-
sample the output back to the original resolution following
XMem [6]. All frames in YouTubeVOS [34] are used by de-
fault. Our simple modifications bring noticeable improve-
ments on all benchmarks. Though, we find that the over-
all framework is more important than these design choices
(Section A.7.2).

A.7. Ablation Studies

A.7.1 On VOS Tasks

We assess the effects of our modifications on the train-
ing process on VOS tasks which purely evaluate tempo-
ral propagation performance. In addition to the standard
DAVIS [24] dataset, we additionally convert the validation
sets of OVIS [25] and UVO [32] to the VOS format. Fol-
lowing DAVIS [24], we discard any segments that do not

appear in the first frame and provide the first-frame ground-
truth segmentation as input. These datasets are more diverse
and allow for a more complete evaluation of temporal prop-
agation performance. Table S2 tabulates our findings. For
a fair comparison, we also re-train the original XMem [6]
with additional OVIS [25] data. A qualitative comparison
of aggressive vs. stable data augmentation is illustrated in
Figure S2.

A.7.2 On Large-Scale Video Panoptic Segmentation

Next, we assess whether these improvements in VOS tasks
transfer to target tasks like video panoptic segmentation.
We compare our final model with/without these modifica-
tions on a large-scale video panoptic segmentation dataset
VIPSeg [22] with the Mask2Former-R50 [4] backbone. Ta-
ble S3 (top) tabulates our findings. Note, our method still
works well even without our modifications to the tempo-
ral propagation network. We find the overall framework to
be more important than particular design choices within the
temporal propagation model.

B. Training Data of Temporal Propagation
B.1. Sensitivity to Training Data

We train the temporal propagation on class-agnostic im-
age segmentation and mask propagation data as described
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Figure S2. Comparison of methods tracking a group of ants with almost identical appearance. The variant with aggressive augmentation
fails for the yellow, blue, and cyan ants toward the end while ours with stable data augmentation tracks all ants successfully. Ground-truth
is annotated by us with an interactive image segmentation method, f-BRS [30]. Zoom in for details.

MOSE DAVIS-17 val DAVIS-17 test-dev YouTubeVOS-2019 val

Method J&F J F J&F J F J&F J F G Js Fs Ju Fu FPS

STCN [8] 52.5 48.5 56.6 85.4 82.2 88.6 76.1 72.7 79.6 82.7 81.1 85.4 78.2 85.9 13.2
AOT-R50 [36] 58.4 54.3 62.6 84.9 82.3 87.5 79.6 75.9 83.3 85.3 83.9 88.8 79.9 88.5 6.4
XMem [6] 56.3 52.1 60.6 86.2 82.9 89.5 81.0 77.4 84.5 85.5 84.3 88.6 80.3 88.6 22.6
DEVA (ours), w/o OVIS 60.0 55.8 64.3 86.8 83.6 90.0 82.3 78.7 85.9 85.5 85.0 89.4 79.7 88.0 25.3
DEVA (ours), w/ OVIS 66.5 62.3 70.8 87.6 84.2 91.0 83.2 79.6 86.8 86.2 85.4 89.9 80.5 89.1 25.3

Table S1. Comparison of DEVA’s temporal propagation module with state-of-the-art video object segmentation methods. FPS is measured
on YouTubeVOS-2019 validation with a V100 GPU. All available frames in YouTubeVOS are used by default.

in Section A.5. We note that these datasets are cheap to
access and amass as they do not require class-specific an-
notations. Here, we evaluate the importance of large-scale
training of the temporal propagation model. We vary the
amount of class-agnostic video-level training data under
two settings: 1) with full image pretraining, and all three
mask propagation datasets (DAVIS [24], YouTubeVOS [34]
and OVIS [25]), and 2) without image pre-taining and us-
ing YouTubeVOS as the only training data. Table S2 (bot-

tom) tabulates our findings on the VIPSeg [22] validation
set. The performance of our model decays gracefully with
fewer training data.

B.2. Class Overlaps with VIPSeg

While we train the temporal propagation network in a
class-agnostic setting, the segmented objects in the training
set might have object categories that overlap with the target
task (e.g., with the classes in VIPSeg [22]). Here, we in-



Variant DAVIS OVIS UVO FPS

XMem [6] 86.1 69.0 82.7 22.6
XMem [6] train w/ OVIS 86.1 72.0 83.0 22.6

With all our modifications 87.6 75.7 83.5 25.8
w/o stable data aug. 87.5 73.6 83.2 25.8
w/o gradient clipping 85.2 71.3 82.7 25.8

Table S2. J&F performance comparisons of XMem [6] and our
different modifications on VOS tasks.

vestigate the effect of this overlap of temporal propagation
training data with target task data on the final performance.

For this, we train the temporal propagation network with
only YouTubeVOS [34] data which has 65 object categories
(other datasets that we use for training have no class anno-
tation). We manually match these 65 categories with the
classes in VIPSeg [22] to partition the classes of VIPSeg
into three sets: ‘overlapping’, ‘non-overlapping’, or ‘am-
biguous’.1 We then evaluate the final task performance
on the overlapping and the non-overlapping sets separately,
while ignoring the ‘ambiguous’ set. We perform the same
evaluation on an end-to-end method, Video-K-Net [17], as
a measure of ‘baseline difficulty’ for each set. Table S4 tab-
ulates our findings. We observe no significant difference
between the overlapping and non-overlapping set when ac-
counting for the difficulty delta (∆) observed in the base-
line. This indicates that our class-agnostic training does not
overfit to the object categories in the training set.

C. Detailed Experimental Settings and Results
C.1. Large-Scale Video Panoptic Segmentation

Following the standard practice [22], we use the 720p
version of the VIPSeg [22] dataset. We evaluate using its
validation set (343 videos) and compute VPQ/STQ using
the official codebase. During temporal propagation, we
downsample the videos such that the shortest side is 480px
and bilinearly upsample the result back to the original reso-
lution following [6].

Video Panoptic Segmentation (VPS) requires the predic-
tion of class labels. We obtain these labels from the image
segmentation model and use online majority voting to de-
termine the output label. Formally, we keep a list of class
labels Cli for each object ri. When an existing (propagated)
segment ri matches with a segment from the in-clip con-
sensus cj , i.e., aij = 1, we take the class label from the
consensus cj and append it to the list Cli. At the output of
every frame, we determine the class label associated with

1The overlapping set includes flag, parasol or umbrella, car, bus, truck,
bicycle, motorcycle, ship or boat, airplane, person, cat, dog, horse, cattle,
skateboard, ball, box, bottle or cup, table or desk, mirror, and train (21
in total). The ambiguous set includes other animal, bag or package, toy,
and textiles (4 in total). The remaining (99) classes in VIPSeg are in the
non-overlapping set.

segment ri by performing majority voting in Cli. Note, in
accordance with VPS evaluation [15], an object can only
have one class label throughout the video. This means a
change in class label necessitates a change in object id,
which we also implemented. Thus, a change in class la-
bel might lead to lower association accuracy. An alterna-
tive algorithm would be to use the final major voting result
to retroactively apply the class label in all frames, which
would however not be strictly online/semi-online.
Running time Analysis Under our default semi-online
setting, we use a clip size of 3 and perform merging ev-
ery 5 frames (i.e., invoking the image model on 60% of all
frames). We report time on VIPSeg [22], averaged across
all frames, on an A6000 GPU. The mask propagation mod-
ule takes 83ms per frame (VIPSeg has more objects per
video than the standard VOS timing benchmark DAVIS-
2017). For every merge, pre-processing (spatial alignment
and finding pairwise IoU) takes 211ms, and solving the
integer program takes 15ms. For the image model (R50
backbone), both Video-K-Net [17] and Mask2Former [4]
take around 200ms per frame. Overall, our method runs
at 4.0fps. Meanwhile, state-of-the-art Video-K-Net runs at
4.9fps. Ours is 18% slower but has a 52% higher VPQ.

C.2. Open-World Video Segmentation

We evaluate on the validation (993 videos) and test (1421
videos) sets of BURST [1]. As in Section C.1, we down-
sample the videos during temporal propagation such that
the shortest side is 480px and bilinearly upsample the result
back to the original resolution following [6]. For efficiency,
we process only every three frames. Since the ground-truth
is sparse (annotated every 24 or 30 frames), we can still per-
form a complete evaluation.

For the Mask2Former [4] image model, we follow
BURST [1] and use the best-performing Swin-L checkpoint
trained on COCO [18] provided by the authors. For the En-
titySeg [26] image model, we also use the best available
Swin-L model checkpoint trained on COCO [18]. For over-
lapping predictions, we use the post-processing for panoptic
segmentation in Mask2Former [4] to resolve them.

We assess Open World Tracking Accuracy (OWTA) us-
ing official tools. OWTA is the geometric mean of De-
tection Recall (DetRe) and Association Accuracy (AssA).
Please refer to [1] for details. For completeness, we addi-
tionally report DetRe and AssA of baselines and our method
in Table S5.

C.3. Referring Video Segmentation

To evaluate on Ref-DAVIS [14] and Ref-
YouTubeVOS [28], we use ReferFormer Swin-L [33]
as the image model. The network is first pretrained on Ref-
COCO [37], Ref-COCO+ [37], and G-Ref [21] datasets
and finetuned on Ref-YouTubeVOS [28] following [33].



Varying Temporal Propagation Model VPQ1 VPQ2 VPQ4 VPQ6 VPQ8 VPQ10 VPQ∞ VPQ STQ

With standard XMem [6] 41.9 41.3 40.6 39.9 39.5 39.0 35.4 37.9 41.3
With our modified XMem [6] 42.1 41.5 40.8 40.1 39.7 39.3 36.1 38.3 41.5

Varying Training Data of Temporal Propagation VPQ1 VPQ2 VPQ4 VPQ6 VPQ8 VPQ10 VPQ∞ VPQ STQ

Image pretraining + 100% video training 42.1 41.5 40.8 40.1 39.7 39.3 36.1 38.3 41.5
Image pretraining + 50% video training 42.0 41.4 40.7 40.1 39.7 39.4 36.0 38.3 41.3
Image pretraining + 10% video training 40.7 40.1 39.3 38.5 38.1 37.7 34.6 36.8 40.1

Training on 100% YouTube-VOS [34] only 41.4 40.9 40.2 39.5 39.1 38.7 35.6 37.8 41.0
Training on 50% YouTube-VOS [34] only 40.5 39.4 38.0 36.6 35.6 34.4 31.3 34.4 37.8

Table S3. Performance comparisons of our method with different temporal propagation model settings on the VIPSeg [22] validation set.
For a fair comparison, all are semi-online with a Mask2Former-R50 [4] image model input.

Method VPQoverlap VPQno-overlap ∆overlap→non-overlap

Video-K-Net 25.0 25.7 +0.7
Ours 38.1 38.6 +0.5

Table S4. Performance comparison on different classes of VIPSeg
that overlap or do not overlap with the training data of tempo-
ral propagation. As a baseline, we use Video-K-Net-R50 [17].
For ours, we use Mask2Former-R50 with a temporal propagation
model that is only trained on YouTubeVOS [34] and evaluated in
a semi-online setting.

Unlike in video panoptic segmentation or open-world video
segmentation, we do not need to use integer programming
to associate segments from the image model in different
frames. This is because each segment corresponds to a
known language expression. Thus, we process each object
independently and use argmax to fuse the final segmen-
tations. As mentioned in the main paper, we employ an
offline setting as in prior works [28, 33, 11].

In the offline setting, we first perform in-clip consensus
by selecting 10 uniformly spaced frames in the video and
using the frame with the highest confidence given by the
image model as a ‘key frame’ for aligning the other frames.
Soft probability maps are used in the consensus to preserve
confidence levels in the prediction. We then forward- and
backward-propagate from the key frame without incorpo-
rating additional image segmentations.

Formally, for a given object, we denote its soft proba-
bility map and confidence score given by the image model
as Prt ∈ [0, 1]H×W and ct ∈ [0, 1] respectively. We de-
note the frame index of the ten chosen frames as Tc =
{t1, t2, ..., t10}.

We aim to compute a soft probability consensus
Cstk at a keyframe index tk by a weighted summa-
tion of the soft probability maps of the chosen frames

{Prt1 ,Prt2 , ...,Prt10}:

Cstk =
∑
i∈Tc

wiPri, (S1)

where wi is a weighting coefficient, with
∑

i wi = 1.
We use the frame with the highest confidence predicted

by the image model as the keyframe:

tk = argmaxi∈Tc
ci. (S2)

We compute the weighting coefficients using a softmax
of the confidences such that we weigh confident predictions
more:

wi =
eci∑

i∈Tc
eci

. (S3)

After the consensus, Cstk is used to initialize forward
and backward propagation from frame tk without incorpo-
rating additional image segmentations. The propagation is
implemented as standard semi-supervised video object seg-
mentation inference with the keyframe as initial guidance.
During propagation, the internal memory H is updated ev-
ery 5 frames using its own prediction as in [6].

C.4. Unsupervised Video Object Segmentation

For single-object unsupervised video object segmenta-
tion (DAVIS-2016 [24]), we use DIS [27] as the image
segmentation model. Since it does not provide segmen-
tation confidence, we approximate it with the normalized
area of the predicted mask to ignore null detections, i.e.,
ci =

1
HW ∥Pri∥1.

For multi-object unsupervised video object segmenta-
tion (DAVIS-2017 [3]), we follow our semi-online proto-
col in open-world video segmentation. The exception being
DAVIS-2017 [3] allows a maximum of 20 objects in the
prediction. We overcome this limitation online by only ac-
cepting the first 20 objects and discarding the rest. When
there are more than 20 objects in the frame, we prioritize
the ones with larger areas as they are less likely to be noisy.



Validation

All Common Uncommon

Method DetRe AssA OWTA DetRe AssA OWTA DetRe AssA OWTA

Mask2Former w/ Box tracker [1] 66.9 55.8 60.9 78.7 57.1 60.9 20.1 30.5 24.0
Mask2Former w/ STCN tracker [1] 67.0 62.6 64.6 78.8 64.1 71.0 20.0 33.3 25.0
OWTB [19] 70.9 45.2 56.2 76.8 47.0 59.8 46.5 34.3 38.5
Mask2Former w/ ours online 72.1 67.5 69.5 80.2 69.9 74.6 39.8 46.4 42.3
Mask2Former w/ ours semi-online 71.8 68.5 69.9 80.3 70.7 75.2 37.9 46.8 41.5
EntitySeg w/ ours online 72.3 66.0 68.8 77.7 68.4 72.7 50.3 50.2 49.6
EntitySeg w/ ours semi-online 72.4 67.1 69.5 78.1 69.3 73.3 50.0 52.2 50.5

Test

All Common Uncommon

Method DetRe AssA OWTA DetRe AssA OWTA DetRe AssA OWTA

Mask2Former w/ Box tracker [1] 61.5 51.1 55.9 71.4 52.5 61.0 21.1 30.0 24.6
Mask2Former w/ STCN tracker [1] 61.6 54.1 57.5 71.5 55.7 62.9 21.0 28.6 23.9
OWTB [19] 70.9 45.2 56.2 76.8 47.0 59.8 46.5 34.3 38.5
Mask2Former w/ ours online 72.2 68.6 70.1 79.8 70.8 75.0 40.7 49.2 44.1
Mask2Former w/ ours semi-online 71.9 69.6 70.5 79.7 71.7 75.4 39.5 50.7 44.1
EntitySeg w/ ours online 72.5 67.3 69.5 77.3 69.2 72.9 52.3 55.0 53.0
EntitySeg w/ ours semi-online 72.4 67.7 69.8 77.4 69.5 73.1 51.9 55.9 53.3

Table S5. Extended results comparing baselines and our methods in the validation/test sets of BURST [1]. Baseline performances are
transcribed from [1].

D. Results on YouTube-VIS

Here we present additional results on the small-
vocabulary YouTube-VIS [35] dataset, but unsurprisingly
recent end-to-end specialized approaches perform better be-
cause a sufficient amount of data is available in this case.
For this task, we use our online video panoptic segmen-
tation setting. Besides the difference in the scale of vo-
cabularies, our method assumes that no two objects occupy
the same pixel, and produces a non-overlapping mask. Al-
though this assumption is usually true, it harms the Average
Precision (AP) evaluation of our method in VIS, with other
methods typically outputting many (≥100) potentially over-
lapping proposals for higher recall. We provide our result
in Table S6.

Method mAP AP@75

MaskProp [2] 40.0 42.9
Video-K-Net [17] 40.5 44.5
MinVIS [13] 47.4 52.1
Mask2Former [4] w/ Ours 40.8 44.3

Table S6. Performance comparisons on YouTube-VIS 2019 val-
idation. All models use a ResNet-50 backbone. Note MinVIS
is optimized for small-vocabulary YouTube-VIS and underper-
forms by 8.4 VPQ compared with our method in large-vocabulary
VIPSeg (Tab. 6 of the main paper, Query assoc. vs. Ours).

E. Qualitative Results
E.1. Visualization

For all results (see our project page), we associate each
object id with a unique color. When a segment changes
color, its object id has changed. This change might happen
often (e.g., flicker) if the method is not stable. We addition-
ally show an ‘overlay’ which is a composite of the colored
segmentation with the input image.

E.2. Large-Scale Video Panoptic Segmentation

We compare our method with state-of-the-art Video-K-
Net [17]. We use the semi-online setting Mask2Former [4]
as the image model. Videos are taken from VIPSeg [22]
validation set.

E.3. Open-World Video Segmentation

We compare our method with the best open-world seg-
mentation baseline (Mask2Former + STCN tracker). We
use the semi-online setting EntitySeg [26] as the image
model. Videos are collected from BURST [1] and the In-
ternet.

E.4. Referring Video Segmentation in the Wild

We compare our method with state-of-the-art referring
video segmentation ReferFormer [33]. We are interested
in the open-world setting beyond standard Ref-DAVIS [14]



and Ref-YouTubeVOS [28]. For this, we use a recent open-
world referring image segmentation model X-Decoder [39]
as our image model. The agility to switch image back-
bones and use the latest advancements in image segmen-
tation is one of the main advantages of our decoupled for-
mulation. We employ an offline setting following our refer-
ring video segmentation evaluation protocol (Section C.3).
Note, ReferFormer [33] is also offline. Our model can seg-
ment rare objects like ‘wheel of fortune’ accurately.
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