Supplementary Material:
Complementary Domain Adaptation and Generalization
for Unsupervised Continual Domain Shift Learning

This Supplementary Material provides additional details
of the experiments conducted using our CoDAG frame-
work, which are not included in the main paper due to space
constraints.

1. The Details of the Experimental Settings

We conduct experiments on three datasets: PACS [7],
Digits-five [2, 4, 6, 10], and DomainNet [11]. We maintain
consistent training steps per epoch across all domains and
domain orders for every dataset. We use 50 steps for PACS,
800 steps for Digits-five, and 75 steps for DomainNet. We
set the number of training epochs per domain to 60 for both
PACS and DomainNet, and to 75 for Digits-five. For dis-
tillation loss, we set the balancing parameter « to 0.2 for
PACS and DomainNet, and 0.5 for Digits-five.

For optimization, we use the SGD optimizer with a
weight decay of 0.0005 and a polynomial learning rate
scheduler. An initial learning rate is set to 0.01 for both
PACS and Digits-five, and 0.005 for DomainNet. The batch
size for mini-batch training is set to 64.

For training of PACS and DomainNet, we use the stan-
dard augmentation techniques including random cropping,
horizontal flipping, color jittering, and grayscaling. For do-
main adaptation, we use the Mixup [13] method with the
mixup hyperparameter set to 2.0.

2. The Details of the Network Architecture

Our model network consists of three parts: feature ex-
tractor, intermediate module, and classifier. We utilize
ResNet-50 [3] as the feature extractor for both PACS and
DomainNet, while for Digits-five, we use DTN [8]. ResNet-
50 is initialized with the weights pretrained with Ima-
geNet [1].

The intermediate module that connects the feature ex-
tractor and classifier is made up of a fully connected layer, a
Batch Normalization layer, a ReLU layer, and another fully
connected layer. The output dimension of the first fully con-
nected layer is 512 for both PACS and DomainNet, and 256
for Digits-five. The output dimension of the other fully con-
nected layer is 256 for both PACS and DomainNet, and 128

for Digits-five. The classifier consists of a single fully con-
nected layer with weight normalization.

3. The Details of the Auxiliary Methods

In this section, we explain the implementation details of
the auxiliary methods we employed for the experiments of
our CoDAG framework in this paper.

SHOT We use simple self-supervised pseudo-labeling,
along with information maximization proposed by Liang et
al. [8]. The balancing parameter [3 is set to 0.1.

RandMix We use the Randmix augmentation imple-
mented by Liu et al. [9]. For the samples from target do-
mains, Randmix is applied only for the ones with predic-
tion confidence over 0.5 for PACS and 0.8 for Digits-five
and DomainNet.

SeINLPL To train the DG model using SeINLPL [5] for
a given number of training epochs, we divide the epochs
equally into three parts for NL, SeINL, and SelPL. For
SelPL, v is set to 0.5.

Replay buffer We build the replay buffer based on the
iCaRL approach [9, 12]. The prototypes are created for each
class in the current domain to prioritize which data to save
and remove in the replay buffer based on their proximity to
the prototypes.

To accommodate the fixed memory size of the replay
buffer, we remove some of the stored samples to make room
for new ones, while retaining M /(K x t) samples for each
class in every previous domain, where M is the maximum
number of samples that can be stored in the replay buffer,
K is the number of classes, and ¢ represents the number of
past domains. In our main experiments, M is set to 200 for
all datasets.



Table 1. The list of different domain orders from each dataset for the main experiments, which are referenced from [9].

Order PACS Digits-five DomainNet
Order1 | A-C—P—S | SN->MT—-MM—SD—US | Re—Pa—In—Cl—Sk—Qu
Order2 | A—-C—S—P | SN—=SD—-MT—US—MM | Cl—In—Pa—Qu—Re—Sk
Order3 | A-P—C—S | MM—US—MT—SD—SN | Cl-Re—In—Qu—Sk—Pa
Order4 | C»A—S—P | MT-MM—SN—SD—US | In—+Qu—Cl—Pa—Re—Sk
Order5 | C»S—P—A | MT->MM—US—SN—SD | Pa—Sk—Qu—In—Re—Cl
Order 6 | P>A—C—S | SD->MM—SN—-MT—US | Qu—Re—Cl—Pa—In—Sk
Order 7 | P»S—A—C | SD->SN—-US—MM—MT | Qu—Sk—Cl—In—Pa—Re
Order 8 | P»S—C—A | SD—US—MM—SN—MT | Sk—In—Pa—Cl—Re—Qu
Order9 | SC—A—P | US=MT—-SN—-MM—SD | Sk—Re—Pa—Cl—Qu—In

Order 10 | S»P—C—A | US—»SD—-SN—-MM—MT | Sk—Re—Qu—Pa—In—Cl

4. The Details of the Main Experiments

For the main experiments, we use the 10 different orders
from each dataset, presented in Table 1, which are randomly
selected by [9]. The first domain in a given order is used
as a source domain, and the rest are used target domains.
For each order, experiments are repeated three times with
different seeds (2022, 2023, 2024).

Table 2, 3 and 4 display the experiment results for 10
individual orders from each dataset, respectively. The re-
sults of the baseline models are referenced from [9]. These
results show that our CoDAG outperforms all other compar-
ison baselines in most of the individual orders across differ-
ent datasets and metrics.

Notably, in terms of the composite score metric All,
which assesses the overall performance of the models by
averaging TDA, TDG, and FA, our CoDAG outperforms
all other baseline models in every order, without exception.
These results provide further confirmation of the effective-
ness and robustness of our CoODAG framework.
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Table 2. Comparison of the performance on the PACS dataset for different state-of-art methods in TDA, TDG, FA, and All. The results are
presented for each domain order. The results of the baseline models are referenced from [9]. The best results are highlighted in bold.

Metric & Orders \ SHOT SHOT++ Tent AdaCon EATA L2D PDEN RaTP \ Ours

Order 1 86.7 894 84.0 85.8 86.7 845 837 855 | 883
Order 2 87.8 894 82.0 81.6 853 83.6 833 87.5 | 879
Order 3 88.7 88.8 82.5 82.8 856 829 799 85.6 | 89.0
Order 4 89.2 91.2 88.2 88.7 89.2 84.6 83.0 87.6 | 89.9
Order 5 85.2 85.4 88.6 86.4 882 80.1 782 85.6 | 89.8
TDA | Order 6 83.1 85.3 75.7 78.6 79.2 755 740 83.2 | 86.0
Order 7 66.9 69.9 74.4 74.0 73.0 713 716 75.9 | 80.6
Order 8 64.0 68.8 72.5 73.9 723 685 698 74.9 | 80.0
Order 9 91.5 92.2 69.6 77.8 73.0 83.0 825 89.6 | 92.6
Order 10 | 75.9 83.2 69.8 69.7 704 744 721 913 | 91.7

Avg. 81.9 84.4 78.7 79.9 803 788 778 84.7 | 87.6

Order 1 69.4 70.4 75.5 75.2 751 740 737 76.8 | 77.8
Order 2 67.0 68.7 73.1 74.6 725 760 716 76.7 | 772
Order 3 67.8 63.3 75.6 75.9 76.1 728 735 717 | 76.2
Order 4 69.5 66.1 78.5 77.1 774 781 772 79.5 | 825
Order 5 61.1 62.2 81.6 74.6 783 746 735 78.5 | 81.2
TDG | Order 6 48.5 50.0 56.2 57.2 574 565 558 634 | 62.1
Order 7 36.6 43.2 52.5 554 543 549 520 56.1 | 60.1
Order 8 37.2 39.0 50.6 52.1 51.8 528 515 53.8 | 58.8
Order 9 53.1 52.7 543 57.3 482 620 609 73.3 | 74.6
Order 10 | 39.1 44.6 60.2 52.3 50.0 56.7 546 69.7 | 71.4

Avg. 54.9 56.0 65.8 65.2 641 658 644 70.6 | 72.2

Order 1 73.0 78.6 89.5 90.7 914 856 852 87.8 | 91.5
Order 2 72.4 82.3 79.5 1.7 837 80.6 774 79.8 | 86.8
Order 3 81.8 78.9 88.5 89.5 90.5 84.8 78.7 87.1 | 91.7
Order 4 76.9 77.6 83.3 84.5 8717 1715 TI1.1 832 | 894
Order 5 82.9 86.1 89.0 88.0 90.8 767 765 84.1 | 90.2
FA Order 6 79.6 84.3 81.4 80.7 835 71.0 709 86.4 | 87.7
Order 7 65.3 80.5 78.0 78.0 744 757 754 78.8 | 83.9
Order 8 583 83.5 73.3 74.0 733 726 721 742 | 83.5
Order 9 86.5 88.8 74.1 79.0 76.6 780 783 87.7 | 911
Order 10 | 72.0 89.5 73.1 73.7 743 734 714 89.8 | 91.8

Avg. 74.9 83.0 81.0 81.6 82.6 776 763 839 | 88.8

Order 1 76.4 79.5 83.0 83.9 844 814 809 834 | 85.9
Order 2 75.7 80.1 78.2 78.0 80.5 80.1 774 81.3 | 84.0
Order 3 79.4 77.0 82.2 82.7 84.1 802 774 835 | 85.6
Order 4 78.5 78.3 83.3 83.4 84.8 80.1 79.1 83.4 | 873
Order 5 76.4 77.9 86.4 83.0 858 771 76.1 82.7 | 87.1
All Order 6 70.4 73.2 71.1 72.2 734 677 669 777 | 78.6
Order 7 56.3 64.5 68.3 69.1 672 673 663 70.3 | 74.9
Order 8 532 63.8 65.5 66.7 65.8 646 645 67.6 | 74.1
Order 9 77.0 71.9 66.0 71.4 659 743 739 83.5 | 86.1
Order 10 | 62.3 72.4 67.7 65.2 649 682 660 83.6 | 85.0

Avg. 70.6 74.5 75.2 75.6 75.7 741 729 79.7 | 829




Table 3. Comparison of the performance on the Digits-five dataset for different state-of-art methods in TDA, TDG, FA, and All. The results
are presented for each domain order. The results of the baseline models are referenced from [9]. The best results are highlighted in bold.

Metric & Orders \ SHOT SHOT++ Tent AdaCon EATA L2D PDEN RaTP \ Ours

Order 1 84.0 87.5 71.5 77.4 76.8 859 819 89.7 | 95.5
Order 2 91.6 94.8 71.5 76.0 769 913 895 90.7 | 95.7
Order 3 81.2 79.9 70.7 75.8 764 859  86.2 87.8 | 91.8
Order 4 73.8 79.6 59.9 64.9 65.0 776 753 86.8 | 90.9
Order 5 79.7 84.9 59.5 65.3 65.8 793 783 87.5 | 91.5
TDA | Order 6 87.0 92.1 80.2 80.5 81.1 89.7 89.0 90.0 | 93.6
Order 7 89.9 91.2 80.9 82.1 832 876 852 91.6 | 92.6
Order 8 89.0 91.5 80.5 80.2 822 88.6 859 89.7 | 92.6
Order 9 48.4 48.8 48.7 55.7 554 742 709 859 | 91.2
Order 10 | 61.2 62.9 57.3 58.3 57.1 829 803 87.1 | 91.1

Avg. 78.6 81.3 68.7 71.6 72.0 843 823 88.7 | 92.7

Order 1 66.2 68.3 71.1 72.6 713 723 694 77.0 | 79.2
Order 2 78.0 78.2 72.9 75.8 715 78.1 784 79.5 | 81.8
Order 3 68.3 65.8 70.7 67.0 69.6 717 705 77.0 | 771
Order 4 49.1 52.0 52.2 53.2 53.7 623 604 72.0 | 719
Order 5 54.0 54.1 53.1 51.1 53.6 6277 614 729 | 725
TDG | Order 6 72.3 75.2 76.9 75.8 778 782 76.8 81.0 | 82.6
Order 7 74.8 76.0 76.9 73.0 76.1  78.1  76.8 81.9 | 81.5
Order 8 73.9 72.6 79.3 76.9 719 780 773 81.3 | 82.2
Order 9 35.1 39.0 41.3 41.3 44.1 617 61.7 73.2 | 73.2
Order 10 | 38.6 41.7 45.9 46.3 442 655 638 71.7 | 72.3

Avg. 61.0 62.3 64.0 63.3 640 709 697 76.8 | 774

Order 1 60.0 67.1 67.8 75.2 762 752 714 83.8 | 87.5
Order 2 73.9 75.5 82.2 82.7 83.6 81.1 79.6 874 | 89.8
Order 3 70.7 71.2 72.9 80.4 855 85.1 81.9 90.1 | 91.7
Order 4 56.5 65.3 50.8 59.0 58.8 723 700 823 | 85.2
Order 5 77.0 79.1 61.4 71.7 712 749 739 852 | 87.8
FA Order 6 59.3 67.4 81.2 80.4 797 768 < T74.1 849 | 86.5
Order 7 62.2 71.0 79.8 82.1 809 776 76.1 84.7 | 86.4
Order 8 57.2 66.0 80.0 81.9 794 750 726 833 | 853
Order 9 25.1 30.0 33.1 56.8 61.8 725 685 85.1 | 86.5
Order 10 | 39.7 52.5 51.5 52.0 524 741 720 82.8 | 84.2

Avg. 58.2 64.5 66.1 72.2 73.0 765 740 850 | 871

Order 1 70.1 74.3 70.1 75.1 748 718 742 835 | 874
Order 2 81.2 82.8 77.5 78.2 773 835 825 859 | 891
Order 3 73.4 72.3 71.4 74.4 712 809 795 85.0 | 86.9
Order 4 59.8 65.6 543 59.0 59.2 707 68.6 80.4 | 82.7
Order 5 70.2 72.7 58.0 62.7 635 723 712 819 | 83.9
All Order 6 72.9 78.2 79.4 78.9 79.5 81.6 80.0 853 | 87.6
Order 7 75.6 79.4 79.2 79.1 80.1 81.1 794 86.1 | 86.8
Order 8 73.4 76.7 79.9 79.7 79.8 805 78.6 84.8 | 86.7
Order 9 36.2 39.3 41.0 51.3 538 695 670 81.4 | 83.6
Order 10 | 46.5 52.4 51.6 52.2 512 742 720 80.5 | 825

Avg. 65.9 69.4 66.2 69.1 69.6 772 753 83.5 | 8.7




Table 4. Comparison of the performance on the DomainNet dataset for different state-of-art methods in TDA, TDG, FA, and All. The
results are presented for each domain order. The results of the baseline models are referenced from [9]. The best results are highlighted in
bold.

Metric & Orders \ SHOT SHOT++ Tent AdaCon EATA L2D PDEN RaTP \ Ours

Order 1 68.4 70.5 59.0 60.4 60.0 599 608 68.6 | 70.3
Order 2 69.7 66.2 28.9 66.2 65.8 565 542 72.0 | 74.7
Order 3 72.6 73.4 65.6 68.6 694 548 527 66.1 | 74.3
Order 4 51.3 53.5 54.6 52.2 529 573 552 61.7 | 67.0
Order 5 68.5 70.9 60.3 60.3 587 569 557 644 | 74.4
TDA | Order 6 63.1 65.3 51.8 52.4 55.0 493 502 563 | 63.2
Order 7 47.7 48.1 50.0 50.8 51.7 417 404 58.0 | 59.2
Order 8 72.8 73.2 67.6 71.6 70.7 640 634 674 | 76.4
Order 9 74.2 75.9 67.6 71.3 69.3 619 622 72.5 | 76.4
Order 10 | 71.9 72.1 31.0 67.9 712 599 610 669 | 74.2

Avg. 66.0 66.9 53.6 62.2 62.5 562 556 654 | 71.0

Order 1 46.9 45.5 52.1 51.3 512 496 480 533 | 54.0
Order 2 52.2 50.0 31.0 52.7 552 556 512 57.6 | 58.1
Order 3 53.6 53.3 58.4 53.7 58.7 528 511 57.5 | 60.2
Order 4 40.8 41.9 50.6 51.3 51.1 482 470 55.8 | 57.7
Order 5 48.4 49.6 52.8 53.0 528 531 510 542 | 56.0
TDG | Order 6 34.0 353 33.1 329 336 365 372 41.8 | 435
Order 7 232 25.7 354 329 344 322 302 425 | 42.6
Order 8 59.2 59.9 61.0 62.0 62.0 621 614 63.2 | 62.7
Order 9 58.7 59.3 61.3 61.6 633 594 599 63.8 | 63.5
Order 10 | 56.2 60.1 41.2 61.3 59.0 574 564 62.3 | 63.2

Avg. 473 48.1 47.7 51.3 521 507 493 552 | 56.2

Order 1 61.4 66.5 67.4 67.0 643 637 61.1 67.5 | 70.9
Order 2 64.5 68.9 34.1 62.6 65.8 489 463 704 | 74.3
Order 3 62.9 67.7 65.6 66.3 69.2 452 431 64.7 | 72.9
Order 4 42.1 65.4 56.4 533 527 415 395 57.1 | 66.4
Order 5 60.9 68.5 58.0 56.6 574 512 486 62.0 | 724
FA Order 6 61.1 66.3 524 494 548 480 46.0 53.8 | 63.6
Order 7 42.8 51.7 48.5 48.5 477 372  36.0 55.0 | 57.5
Order 8 61.6 67.5 71.6 72.8 73.5 588  55.1 63.1 | 74.9
Order 9 67.4 77.3 76.8 76.1 76.0 665 656 76.3 | 82.8
Order 10 | 60.4 69.6 30.4 65.5 663 614 609 64.6 | 729

Avg. 58.5 66.9 56.1 61.8 62.8 522 502 63.5 | 70.9

Order 1 58.9 60.8 59.5 59.6 585 577  56.6 63.1 | 65.1
Order 2 62.1 61.7 31.3 60.5 623 537 506 66.7 | 69.0
Order 3 63.0 64.8 63.2 62.9 65.8 509 49.0 62.8 | 69.1
Order 4 44.7 53.6 53.9 52.3 522 490 472 582 | 63.7
Order 5 59.3 63.0 57.0 56.6 563 537 518 60.2 | 67.6
All Order 6 52.7 55.6 45.8 449 478 446 445 50.6 | 56.8
Order 7 379 41.8 44.6 44.1 446 370 355 51.8 | 531
Order 8 64.5 66.9 66.7 68.8 68.7 616 60.0 64.6 | 71.3
Order 9 66.8 70.8 68.6 69.7 69.5 626 626 709 | 74.2
Order 10 | 62.8 67.3 34.2 64.9 655 596 594 64.6 | 70.1

Avg. 57.3 60.6 52.5 58.4 59.1 530 517 614 | 66.0




