
A. Implementation Details

We implement DAPT based on the open source from
CoOp [17] and VPT [6], using the PyTorch [11] library.
Before training, the learnable vectors for the text prompt are
initialized with a zero-mean Gaussian distribution following
the CoOp. In contrast, the learnable vectors for the visual
prompt are initialized with the Xavier uniform initialization
scheme following the VPT. In all experiments, the length of
the learnable vector is set to 16 in both the text and visual
prompt. In the case of linear probe CLIP [12] and zero-
shot CLIP [12], we set the initialization of the text prompt
as “a photo of a [CLASS].” In the few-shot learn-
ing experiments, we follow the approach of Zhou et al. [17]
and conduct random sampling three times for each dataset.
We report the average after testing three times for all exper-
iments, including DAPT, CoOp [17], VPT [6], and linear
probe CLIP. As observed in the case of VPT, there is vari-
ance in the results of the visual prompt depending on hy-
perparameters such as learning rate. Therefore, we conduct
a grid search for learning rate in the range of {0.002, 0.02,
0.2, 2.0, 20.0}, following the approach of Jia et al. [6].

B. Additional Analyses

In this section, we further analyze DAPT with various
experiments.

B.1. Analysis of Hyperparameter βt and βv.

The hyperparameter βt and βv adjust the strength of
inter-dispersion loss and intra-dispersion loss, respectively.
Due to the characteristics of each dataset, it may have dif-
ferent optimal values. We depict the accuracy according to
βt and βv in Figure A1 to investigate the hyperparameters.
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Figure A1: Exploration of hyperparamters.

As described in Figure A1, DAPT shows consistent perfor-
mance with a wide range of hyperparameters. To sum up,
DAPT is robust to the choice of hyperparameters, except
βt = 100. Table A3 summarizes optimal hyperparameters
for each dataset.

B.2. t-SNE Visualization

Figure A2 presents t-SNE [14] visualization of image
embeddings in zero-shot CLIP [12] and DAPT. All plots
show that DAPT properly increases the distance between
different classes as well as minimizes the intra-class vari-
ance. Especially the results on OxfordPets [10], Flow-
ers102 [9], and UCF101 [13] demonstrate that DAPT helps
embeddings form compact clusters and increase the dis-
tance between different classes.

B.3. Detailed Experimental Results

In all experiments, we ran three times with randomly
sampled data in each run and noted average values. For
compelling results, we provide accuracy with standard de-
viation in 16-shots image classification on 11 datasets in Ta-
ble A1. On average, DAPT achieved the best performance
in 10 benchmarks.

Dataset LP-CLIP CoOp VPT DAPT

OxfordPets 86.49±0.06 91.91±0.42 92.04±0.58 92.27±0.40

Flowers102 97.51±0.13 96.79±0.35 91.48±0.15 97.06±0.25

FGVCAircraft 45.51±0.08 43.96±0.74 34.92±0.16 46.37±1.00

DTD 69.58±0.73 69.98±0.18 61.47±0.37 71.38±1.62

EuroSAT 87.24±0.23 85.58±1.63 90.67±1.44 92.65±0.86

StanfordCars 80.67±0.46 82.62±0.13 70.59±1.00 83.03±0.34

Food101 83.14±0.45 84.31±0.17 86.03±0.27 86.55±0.10

SUN397 73.03±0.74 74.69±0.24 70.33±0.16 75.99±0.12

Caltech101 95.51±0.31 95.68±0.20 95.35±0.15 95.82±0.07

UCF101 82.35±0.36 82.15±1.42 79.99±0.69 84.53±0.55

ImageNet 67.42±0.26 71.93±0.10 69.31±0.05 72.20±0.18

Table A1: 16-shots image classification on 11 datasets.

C. Generalization From Base to New Classes
CoOp [17] demonstrated exemplary performance in the

few-shot learning using text prompts, but it has a weak gen-
eralizability problem regarding unseen classes, as discussed
in CoCoOp [16]. As shown in Table 2, we prove that
DAPT has significant performance gain in generalization.
However, we supplement more experiments to prove that
DAPT has superior generalization performance compared
with baselines. In all experiments, we evaluate not only
original classes but also unseen classes. Following Zhou et
al. [16], we divide the dataset into base classes and new
classes, then train on 16 samples of the base class before
testing on the new class. Similarly to the few-shot learning
setting, we report the average of three times. The result for
11 datasets and the overall average is presented in Table A2.
The experimental results show that the accuracy for the new
class is higher than CoOp in most datasets. The harmonic
mean of the base and new class demonstrates superior per-
formance for seven datasets.



(a) OxfordPets [10]. (b) Flowers102 [9].

(c) DTD [2]. (d) StanfordCars [7].

(e) FGVCAircraft [8]. (f) Caltech101 [4].

(e) UCF101 [13]. (i) EuroSAT [5].

Figure A2: t-SNE [14] visualization of image embeddings. In each dataset, the left hypersphere represents zero-shot CLIP,
and the right hypersphere represents DAPT.



(a) Average over 11 datasets.

Base New H

CLIP 69.53 74.34 71.85
CoOp 82.71 62.84 71.42
DAPT 84.20 63.71 72.54

(b) OxfordPets [10].

Base New H

CLIP 91.33 97.15 94.15
CoOp 93.37 95.43 94.39
DAPT 94.00 72.43 81.82

(c) Flowers102 [9].

Base New H

CLIP 71.70 77.45 74.46
CoOp 97.82 59.79 74.21
DAPT 98.16 61.37 75.53

(d) FGVCAircraft [8].

Base New H

CLIP 27.67 35.87 31.24
CoOp 40.66 24.44 30.53
DAPT 45.54 19.74 27.54

(e) DTD [2].

Base New H

CLIP 53.24 60.87 56.80
CoOp 79.59 40.30 53.51
DAPT 82.06 53.42 64.71

(f) EuroSAT [5].

Base New H

CLIP 56.93 63.92 60.22
CoOp 92.21 50.70 65.43
DAPT 95.05 43.02 59.23

(g) StanfordCars [7].

Base New H

CLIP 63.93 74.99 69.02
CoOp 77.70 59.39 67.32
DAPT 79.69 57.46 66.77

(h) Food101 [1].

Base New H

CLIP 90.08 91.13 90.60
CoOp 88.40 85.87 87.11
DAPT 89.57 89.82 89.69

(i) SUN397 [15].

Base New H

CLIP 69.46 75.56 72.38
CoOp 80.64 65.43 72.24
DAPT 81.87 74.80 78.18

(j) Caltech101 [4].

Base New H

CLIP 97.22 94.21 95.69
CoOp 98.19 86.17 91.79
DAPT 98.24 87.74 92.69

(k) UCF101 [13].

Base New H

CLIP 70.89 78.42 74.47
CoOp 84.80 55.62 67.17
DAPT 85.09 71.46 77.68

(l) ImageNet [3].

Base New H

CLIP 72.40 68.12 70.19
CoOp 76.44 68.11 72.04
DAPT 76.97 69.54 73.07

Table A2: Comparison of CLIP, CoOp, and DAPT in the base-to-new generalization setting.
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βt 0.1 0.01 0.01 0.01 10.0 0.1 0.01 0.01 0.01 0.1 0.01
βv 10.0 10.0 100.0 100.0 100.0 100.0 10.0 100.0 10.0 0.1 0.01
Learning rate 0.02 0.002 2.0 20.0 20.0 0.002 20.0 20.0 0.2 20.0 2.0

Table A3: Hyperparameters on 11 datasets in few-shot learning.
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