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In this supplementary material, we provide more method
details (Section A), analyses on Terra Incognita (Section B),
evaluation results (Section C) and discussion (Section D).

A. Method Details

This section provides more details of the chosen vision-
language model (Section A.1) and design choices for learn-
ing style word vectors (Section A.2).

A.1. Large-scale vision-language model

We choose CLIP [13] as our pre-trained vision-language
model which is a large-scale model trained with 400 million
image-text pairs. Note that the proposed method is broadly
applicable to the CLIP-like vision-language models [7, 16]
which also construct hyperspherical joint vision-language
spaces using contrastive learning methods. Given a batch of
image-text pairs, such models jointly train an image encoder
and a text encoder considering similarity scores obtained
from image-text pairings.
Joint vision-language training. Suppose there is a batch of
M image-text pairs. Among all possible M ×M pairings,
the matched M pairs are the positive pairs and the other
M2 −M pairs are the negative pairs. CLIP [13] is trained
to maximize cosine similarities of image and text features
from the positive M pairs while minimizing the similarities
of such features from the negative M2 −M pairs.
Image encoder. CLIP [13] utilizes ResNet [6] or ViT [4] as
its image encoder. Given an input image, the image encoder
extracts its image feature. After that, the image feature is
mapped to a hyperspherical joint vision-language space by
ℓ2 normalization.
Text encoder. CLIP [13] utilizes Transformer [14] as its text
encoder. Given an input text prompt, it is converted to word
vectors via a tokenization process and a word lookup proce-
dure. Using these word vectors, the text encoder generates a
text feature which is then mapped to a hyperspherical joint
vision-language space by ℓ2 normalization.
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Figure A1: GPU memory usage when learning K style word
vectors for the target task OfficeHome [15] (65 classes) with
respect to the design choices, Sequential or Parallel.

Zero-shot inference. At inference time, zero-shot CLIP [13]
synthesizes classifier weights via the text encoder using N
class names pre-defined in the target task. Given an input
image, the image encoder extracts its image feature and the
text encoder produces N text features using the N class
names. Then, it computes cosine similarity scores between
the image feature and text features, and selects the class
name which results in the highest similarity score as its
classification output.

A.2. Empirical justification of our design choice

As described in Section 3.1 of the main paper, there are
two possible design choices for learning K style word vec-
tors: (1) learning each style word vector si in a sequential
manner, or (2) learning all style word vectors {si}Ki=1 in a
parallel manner. We choose the former mainly due to its
much less memory overhead. As shown in Figure A1, we
could sequentially learn ∼100 style word vectors with ∼4.2
GB memory usage. However, it is not possible to learn more
than 21 style word vectors in a parallel manner using a single
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Figure B1: Several examples from the Terra Incognita [1] dataset. We visualize class entities using red bounding boxes, since
they are not easily recognizable due to their small sizes and complex background scenes.

Configuration Accuracy (%)
Source Domain

Method Domain Description Location100 Location38 Location43 Location46 Avg.
ResNet-50 [6] with pre-trained weights on ImageNet [2]

SelfReg [8] ✓ – 48.8±0.9 41.3±1.8 57.3±0.7 40.6±0.9 47.0
GVRT [11] ✓ – 53.9±1.3 41.8±1.2 58.2±0.9 38.0±0.6 48.0

ResNet-50 [6] with pre-trained weights from CLIP [13]
ZS-CLIP (C) [13] – – 8.4±0.0 13.7±0.0 32.5±0.0 23.3±0.0 19.5
ZS-CLIP (PC) [13] – ✓ 9.9±0.0 28.3±0.0 32.9±0.0 24.0±0.0 23.8
PromptStyler – – 13.8±1.7 39.8±1.3 38.0±0.4 30.3±0.3 30.5

Table B1: Top-1 classification accuracy on the Terra Incognita [1] dataset. Compared with existing domain generalization
methods which utilize source domain data, zero-shot methods using CLIP [13] show unsatisfactory results on this dataset.

RTX 3090 GPU (24 GB Memory) due to its large memory
overhead. In detail, learning 20 and 21 style word vectors
takes 22.4 GB and 23.5 GB, respectively. The large memory
overhead caused by the parallel learning design substantially
limits the number of learnable style word vectors.

To be specific, PromptStyler with the parallel learning
design needs to generate K style features, KN style-content
features, and N content features for learning K style word
vectors at the same time; these features are used to compute
the style diversity loss Lstyle and the content consistency
loss Lcontent for learning all the style word vectors in a
parallel manner. Note that the large memory overhead is
mainly caused by the KN style-content features. Suppose
we want to learn 80 style word vectors for the target task
OfficeHome [15] (65 classes). Then, we need to synthesize
5200(= 80 × 65) style-content features. Even worse, we
need to generate 27600(= 80× 345) style-content features
for the target task DomainNet [12] (345 classes). On the
other hand, PromptStyler with the sequential learning design
only requires i style features, N style-content features, and
N content features for learning i-th style word vector, where
1 ≤ i ≤ K. For scalability, we chose the sequential learning
design since it could handle a lot of learnable style word
vectors and numerous classes in the target task.

B. Analyses on Terra Incognita
As described in Section 5 of the main paper, the quality

of the latent space constructed by a large-scale pre-trained
model significantly affects the effectiveness of PromptStyler.
To be specific, the proposed method depends on the quality
of the joint vision-language space constructed by CLIP [13].
Although our method achieves state-of-the-art results on
PACS [9], VLCS [5], OfficeHome [15], and DomainNet [12],
its performance on Terra Incognita [1] is not satisfactory.
This section provides more analyses on the dataset.

Table B1 shows that PromptStyler outperforms zero-shot
CLIP [13] for all domains in the Terra Incognita dataset [1].
However, its accuracy on this dataset is lower compared with
existing domain generalization methods [8, 11] which utilize
several images from the dataset as their source domain data.
This unsatisfactory result might be due to the low accuracy
of CLIP on the dataset. We suspect that images in the Terra
Incognita dataset (Fig. B1) might be significantly different
from the domains that CLIP has observed. The distribution
shifts between CLIP training dataset and the Terra Incognita
dataset might be extreme, and thus such distribution shifts
could not be entirely covered by our method which exploits
CLIP latent space. We hope this issue could be alleviated
with the development of large-scale models.



Configuration Accuracy (%)
Source Domain

Method Domain Description Art Painting Cartoon Photo Sketch Avg.
ResNet-50 [6] with pre-trained weights on ImageNet [2]

GVRT [11] ✓ – 87.9±0.3 78.4±1.0 98.2±0.1 75.7±0.4 85.1
SelfReg [8] ✓ – 87.9±1.0 79.4±1.4 96.8±0.7 78.3±1.2 85.6

ResNet-50 [6] with pre-trained weights from CLIP [13]
ZS-CLIP (C) [13] – – 88.9±0.0 94.4±0.0 99.3±0.0 79.8±0.0 90.6
ZS-CLIP (PC) [13] – ✓ 90.8±0.0 93.3±0.0 99.4±0.0 79.3±0.0 90.7
PromptStyler – – 93.7±0.1 94.7±0.2 99.4±0.0 84.9±0.1 93.2

ViT-B / 16 [4] with pre-trained weights from CLIP [13]
ZS-CLIP (C) [13] – – 96.4±0.0 98.9±0.0 99.9±0.0 87.7±0.0 95.7
ZS-CLIP (PC) [13] – ✓ 97.2±0.0 99.1±0.0 99.9±0.0 88.2±0.0 96.1
PromptStyler – – 97.6±0.1 99.1±0.1 99.9±0.0 92.3±0.3 97.2

ViT-L / 14 [4] with pre-trained weights from CLIP [13]
ZS-CLIP (C) [13] – – 97.2±0.0 99.5±0.0 99.9±0.0 93.8±0.0 97.6
ZS-CLIP (PC) [13] – ✓ 99.0±0.0 99.7±0.0 99.9±0.0 95.5±0.0 98.5
PromptStyler – – 99.1±0.0 99.7±0.0 100.0±0.0 95.5±0.1 98.6

Table C1: Comparison with state-of-the-art domain generalization methods in terms of per-domain top-1 classification accuracy
on PACS [9]. We repeat each experiment using three different seeds, and report average accuracies with standard errors.
ZS-CLIP (C) denotes zero-shot CLIP using “[class]” as its text prompt, and ZS-CLIP (PC) indicates zero-shot CLIP using “a
photo of a [class]” as its text prompt. Note that PromptStyler does not use any source domain data and domain descriptions.

Configuration Accuracy (%)
Source Domain

Method Domain Description Caltech LabelMe SUN09 VOC2007 Avg.
ResNet-50 [6] with pre-trained weights on ImageNet [2]

SelfReg [8] ✓ – 96.7±0.4 65.2±1.2 73.1±1.3 76.2±0.7 77.8
GVRT [11] ✓ – 98.8±0.1 64.0±0.3 75.2±0.5 77.9±1.0 79.0

ResNet-50 [6] with pre-trained weights from CLIP [13]
ZS-CLIP (C) [13] – – 99.2±0.0 62.4±0.0 69.0±0.0 73.5±0.0 76.0
ZS-CLIP (PC) [13] – ✓ 99.4±0.0 65.0±0.0 71.7±0.0 84.2±0.0 80.1
PromptStyler – – 99.5±0.0 71.2±0.2 72.0±0.0 86.5±0.3 82.3

ViT-B / 16 [4] with pre-trained weights from CLIP [13]
ZS-CLIP (C) [13] – – 99.7±0.0 61.8±0.0 70.1±0.0 73.9±0.0 76.4
ZS-CLIP (PC) [13] – ✓ 99.9±0.0 68.9±0.0 74.8±0.0 85.9±0.0 82.4
PromptStyler – – 99.9±0.0 71.5±0.3 73.9±0.2 86.3±0.1 82.9

ViT-L / 14 [4] with pre-trained weights from CLIP [13]
ZS-CLIP (C) [13] – – 99.9±0.0 59.3±0.0 71.0±0.0 79.9±0.0 77.5
ZS-CLIP (PC) [13] – ✓ 99.9±0.0 70.9±0.0 72.9±0.0 86.0±0.0 82.4
PromptStyler – – 99.9±0.0 71.1±0.7 71.8±1.0 86.8±0.0 82.4

Table C2: Comparison with state-of-the-art domain generalization methods in terms of per-domain top-1 classification accuracy
on VLCS [5]. We repeat each experiment using three different seeds, and report average accuracies with standard errors.
ZS-CLIP (C) denotes zero-shot CLIP using “[class]” as its text prompt, and ZS-CLIP (PC) indicates zero-shot CLIP using “a
photo of a [class]” as its text prompt. Note that PromptStyler does not use any source domain data and domain descriptions.



Configuration Accuracy (%)
Source Domain

Method Domain Description Art Clipart Product Real World Avg.
ResNet-50 [6] with pre-trained weights on ImageNet [2]

SelfReg [8] ✓ – 63.6±1.4 53.1±1.0 76.9±0.4 78.1±0.4 67.9
GVRT [11] ✓ – 66.3±0.1 55.8±0.4 78.2±0.4 80.4±0.2 70.1

ResNet-50 [6] with pre-trained weights from CLIP [13]
ZS-CLIP (C) [13] – – 69.9±0.0 46.8±0.0 77.7±0.0 79.8±0.0 68.6
ZS-CLIP (PC) [13] – ✓ 71.7±0.0 52.0±0.0 81.6±0.0 82.6±0.0 72.0
PromptStyler – – 73.4±0.1 52.4±0.2 84.3±0.1 84.1±0.1 73.6

ViT-B / 16 [4] with pre-trained weights from CLIP [13]
ZS-CLIP (C) [13] – – 80.7±0.0 64.6±0.0 86.3±0.0 88.0±0.0 79.9
ZS-CLIP (PC) [13] – ✓ 82.7±0.0 67.6±0.0 89.2±0.0 89.7±0.0 82.3
PromptStyler – – 83.8±0.1 68.2±0.0 91.6±0.1 90.7±0.1 83.6

ViT-L / 14 [4] with pre-trained weights from CLIP [13]
ZS-CLIP (C) [13] – – 86.2±0.0 73.3±0.0 92.0±0.0 92.2±0.0 85.9
ZS-CLIP (PC) [13] – ✓ 87.2±0.0 73.8±0.0 93.0±0.0 93.4±0.0 86.9
PromptStyler – – 89.1±0.1 77.6±0.1 94.8±0.1 94.8±0.0 89.1

Table C3: Comparison with state-of-the-art domain generalization methods in terms of per-domain top-1 classification accuracy
on OfficeHome [15]. We repeat each experiment using three different seeds, and report average accuracies with standard errors.
ZS-CLIP (C) denotes zero-shot CLIP using “[class]” as its text prompt, and ZS-CLIP (PC) indicates zero-shot CLIP using “a
photo of a [class]” as its text prompt. Note that PromptStyler does not use any source domain data and domain descriptions.

Configuration Accuracy (%)
Source Domain

Method Domain Description Clipart Infograph Painting Quickdraw Real Sketch Avg.
ResNet-50 [6] with pre-trained weights on ImageNet [2]

SelfReg [8] ✓ – 60.7±0.1 21.6±0.1 49.4±0.2 12.7±0.1 60.7±0.1 51.7±0.1 42.8
GVRT [11] ✓ – 62.4±0.4 21.0±0.0 50.5±0.4 13.8±0.3 64.6±0.4 52.4±0.2 44.1

ResNet-50 [6] with pre-trained weights from CLIP [13]
ZS-CLIP (C) [13] – – 53.1±0.0 39.2±0.0 52.7±0.0 6.3±0.0 75.2±0.0 47.1±0.0 45.6
ZS-CLIP (PC) [13] – ✓ 53.6±0.0 39.6±0.0 53.4±0.0 5.9±0.0 76.6±0.0 48.0±0.0 46.2
PromptStyler – – 57.9±0.0 44.3±0.0 57.3±0.0 6.1±0.1 79.5±0.0 51.7±0.0 49.5

ViT-B / 16 [4] with pre-trained weights from CLIP [13]
ZS-CLIP (C) [13] – – 70.7±0.0 49.1±0.0 66.4±0.0 14.8±0.0 82.7±0.0 63.1±0.0 57.8
ZS-CLIP (PC) [13] – ✓ 71.0±0.0 47.7±0.0 66.2±0.0 14.0±0.0 83.7±0.0 63.5±0.0 57.7
PromptStyler – – 73.1±0.0 50.9±0.0 68.2±0.1 13.3±0.1 85.4±0.0 65.3±0.0 59.4

ViT-L / 14 [4] with pre-trained weights from CLIP [13]
ZS-CLIP (C) [13] – – 78.2±0.0 53.0±0.0 70.7±0.0 21.6±0.0 86.0±0.0 70.3±0.0 63.3
ZS-CLIP (PC) [13] – ✓ 79.2±0.0 52.4±0.0 71.3±0.0 22.5±0.0 86.9±0.0 71.8±0.0 64.0
PromptStyler – – 80.7±0.0 55.6±0.1 73.8±0.1 21.7±0.0 88.2±0.0 73.2±0.0 65.5

Table C4: Comparison with state-of-the-art domain generalization methods in terms of per-domain top-1 classification accuracy
on DomainNet [12]. We repeat each experiment using three different seeds, and report average accuracies with standard errors.
ZS-CLIP (C) denotes zero-shot CLIP using “[class]” as its text prompt, and ZS-CLIP (PC) indicates zero-shot CLIP using “a
photo of a [class]” as its text prompt. Note that PromptStyler does not use any source domain data and domain descriptions.



Accuracy (%)
Distribution PACS VLCS OfficeHome DomainNet Avg.

U(0.00, 0.20) 93.1 82.6 73.8 49.2 74.7
N (0.00, 0.202) 93.0 81.0 73.6 49.5 74.3
N (0.20, 0.022) 93.1 82.5 73.5 49.3 74.6
N (0.00, 0.022) 93.2 82.3 73.6 49.5 74.7

Table C5: Effects of the distributions used for initializing
style word vectors. Uniform or Normal distribution is used.

C. Evaluation Results

Per-domain accuracy. As shown in Table C1–C4, we pro-
vide per-domain top-1 classification accuracy on domain
generalization benchmarks including PACS [9] (4 domains
and 7 classes), VLCS [5] (4 domains and 5 classes), Office-
Home [15] (4 domains and 65 classes) and DomainNet [12]
(6 domains and 345 classes); each accuracy is obtained by
averaging results from experiments repeated using three dif-
ferent random seeds. Interestingly, compared with zero-shot
CLIP [13] which leverages a photo domain description (“a
photo of a [class]”), our PromptStyler achieves similar or
better results on photo domains, e.g., on the VLCS dataset
which consists of 4 photo domains. Note that the description
has more domain-specific information and more detailed
contexts compared with the naı̈ve prompt (“[class]”).
Different distributions for initializing style word vectors.
Following prompt learning methods [18, 19], we initialized
learnable style word vectors using zero-mean Gaussian dis-
tribution with 0.02 standard deviation. To measure the effect
of the used distribution for the initialization, we also quanti-
tatively evaluate PromptStyler using different distributions
for initializing style word vectors. As shown in Table C5,
the proposed method also achieves similar results when ini-
tializing style word vectors using different distributions.

D. Discussion

PromptStyler aims to improve model’s generalization ca-
pability by simulating various distribution shifts in the latent
space of a large-scale pre-trained model. To achieve this goal,
our method leverages a joint vision-language space where
text features could effectively represent their relevant image
features. It does not mean that image and text features should
be perfectly interchangeable in the joint vision-language
space; a recent study has demonstrated the modality gap
phenomenon of this joint space [10]. However, thanks to
the cross-modal transferability in the joint vision-language
space [17], the proposed method could still be effective, i.e.,
we could consider text features as proxies for image features
while training a linear classifier (Fig. 3 of the main paper).

When our method is implemented with CLIP [13] and
we adopt ArcFace [3] as our classification loss Lclass, there
is another interesting interpretation of the proposed method.

As described in Section A.1, CLIP text encoder synthesizes
classifier weights using class names for zero-shot inference
and then it computes cosine similarity scores between the
classifier weights and input image features. Similarly, our
method computes cosine similarity scores between classifier
weights of the trained classifier (Fig. 3 of the main paper) and
input image features. From this perspective, the proposed
method improves the decision boundary of the synthesized
classifier used in zero-shot CLIP by generating diverse style-
content features and then training a linear classifier using
the style-content features. In other words, the trained clas-
sifier could be considered as an improved version of the
synthesized classifier used in zero-shot CLIP.

References
[1] Sara Beery, Grant van Horn, and Pietro Perona. Recognition

in Terra Incognita. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2018.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. ImageNet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[3] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou.
ArcFace: Additive Angular Margin Loss for Deep Face
Recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image is
Worth 16x16 Words: Transformers for Image Recognition at
Scale. In International Conference on Learning Representa-
tions (ICLR), 2021.

[5] Chen Fang, Ye Xu, and Daniel N. Rockmore. Unbiased
Metric Learning: On the Utilization of Multiple Datasets and
Web Images for Softening Bias. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2013.

[6] He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and
Sun, Jian. Deep Residual Learning for Image Recognition.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778, 2016.

[7] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, and Tom
Duerig. Scaling Up Visual and Vision-Language Representa-
tion Learning With Noisy Text Supervision. In International
Conference on Machine Learning (ICML), 2021.

[8] Daehee Kim, Seunghyun Park, Jinkyu Kim, and Jaekoo Lee.
SelfReg: Self-supervised Contrastive Regularization for Do-
main Generalization. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), 2021.

[9] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M.
Hospedales. Deeper, Broader and Artier Domain Generaliza-
tion. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2017.

[10] Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung,
and James Zou. Mind the Gap: Understanding the Modal-



ity Gap in Multi-modal Contrastive Representation Learn-
ing. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[11] Seonwoo Min, Nokyung Park, Siwon Kim, Seunghyun Park,
and Jinkyu Kim. Grounding Visual Representations with
Texts for Domain Generalization. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 2022.

[12] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment Matching for Multi-Source
Domain Adaptation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), 2019.

[13] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning Transferable Visual
Models From Natural Language Supervision. In International
Conference on Machine Learning (ICML), 2021.

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is All you Need. In Advances in Neural
Information Processing Systems (NIPS), 2017.

[15] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep Hashing Network for
Unsupervised Domain Adaptation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

[16] Jinyu Yang, Jiali Duan, Son Tran, Yi Xu, Sampath Chanda,
Liqun Chen, Belinda Zeng, Trishul Chilimbi, and Junzhou
Huang. Vision-Language Pre-Training with Triple Con-
trastive Learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2022.

[17] Yuhui Zhang, Jeff Z. HaoChen, Shih-Cheng Huang, Kuan-
Chieh Wang, James Zou, and Serena Yeung. Diagnosing and
Rectifying Vision Models using Language. In International
Conference on Learning Representations (ICLR), 2023.

[18] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Zi-
wei Liu. Conditional Prompt Learning for Vision-Language
Models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

[19] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei
Liu. Learning to Prompt for Vision-Language Models. In
International Journal of Computer Vision (IJCV), 2022.


