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1. Overview

In this supplementary material, we present more compre-
hensive results and analysis.

• Sample efficiency and computational efficiency of the
proposed method (Section 2)

• Stability of the proposed method under strong augmen-
tation (Section 3)

• Quantitative evaluation of the proposed method accord-
ing to the asymmetric augmentation and the choice of
augmentation (Section 4.1 and 4.2)

• Experimental details including hyperparameters, ESS
module and network architecture (Section 5.1, 5.2 and
5.3)

• Visualized examples of test environments (Section 5.4)

2. Efficiency

2.1. Sample efficiency over state-of-the-arts

Aside from improving generalization capability, the
method of EAR is closely related to learning good repre-
sentations. Efficient policy learning is possible by extracting
and learning only essential information of an agent, exclud-
ing unnecessary environment-related information. This argu-
ment is supported by the learning curves in Figure 1, which
compares the training performance and sample efficiency of
EAR against the strong baselines, RAD [7] and DrQ [6] over
5 random seeds. RAD and DrQ are the state-of-the-art meth-
ods that have achieved significant improvements on sample
efficiency through various augmentations. In all tasks, the
proposed method converged faster than the two methods with
a smaller amount of data, at the same time, achieving higher
or competitive episode returns. Our results indicate that
learning only vital features through self-supervised learning
enables the efficient policy learning, which in turn improves
sample efficiency.

Table 1. Comparison on the number of model parameters and an
average inference time per episode at evaluation time.

Method EAR VAI SAC PAD CURL

Model parameter (M) 2.55 4.88 2.54 2.54 2.54
Time per episode (s) 0.72 0.72 0.71 4.13 0.71

2.2. Computational efficiency

Table 1 shows the specific values for Figure 2, which
illustrates the comparison on the number of model param-
eters and an average speed per episode at evaluation time
with VAI [14], SAC [2], PAD [3] and CURL [8]. EAR is
computationally efficient in terms of model complexity and
inference time while achieving superior performance (Table
1, 2 and Figure 7 of the original manuscript), compared to
VAI [14] and PAD [3]. EAR even has the similar runtime
and model complexity to the existing RL algorithms [2, 8]
that do not consider the generalization capability.

3. Stability under strong augmentation

Determining the strength of the data augmentation is
considered to be an important task among randomization
methods, since strong augmentation makes optimization dif-
ficult, increasing instability and overall sample complexity.
However, the proposed method effectively handles this prob-
lem, in that it suppresses all distractions and feeds only
environment-agnostic features.

To compare the stability, we evaluated our method against
VAI [14], which achieves the highest generalization perfor-
mance among comparison methods, under the same degree
of strong augmentations. To be more specific, VAI uses ran-
dom box addition or brightness change in its experiment, and
defined this degree as ‘weak augmentation’. By increasing
the degree of these augmentations up to 8 times (e.g., num-
ber of random boxes, maximum size of boxes), we defined
strong augmentations to conduct experiments on stability.
Note that the same type of augmentation used in VAI [14]
was adopted, and only the intensity was increased. Figure 3
and Table 2 show the training and test performance of EAR



Figure 1. Learning curves of EAR compared to state-of-the-art methods including RAD [7] and DrQ [6] on DM Control Suite [12]. We
report mean (line) and standard deviation (shaded area) over 5 random seeds. Aside from improving generalization capability, EAR competes
favorably with the two methods in terms of sample efficiency.

Table 2. Generalization performance measured by episode return on randomized color test under the same degree of strong augmentations.
We report mean and standard deviation over 5 random seeds. By excluding the environmental elements from the feature stage, EAR is
always capable of achieving stable test performance regardless of the intensity of augmentation. Thus, EAR improves generalization stability
under strong augmentations.

Methods Walker, walk Walker, stand Cartpole, swingup Cartpole, balance Ball in cup, catch Finger, spin

EAR 922±37 972±11 884±39 997±2 979±15 946±18
VAI [14] 651±63 959±28 798±22 947±31 810±78 915±17

Figure 2. Comparison on the number of model parameters and an
average inference time per episode.

and VAI [14] under strong augmentations, respectively. We
reported mean and standard deviation over 5 random seeds
for both training and test, and test performance was mea-
sured on randomized color test of DM Control Suite [12]
Generalization Benchmark [4]. We empirically observed
that strong augmentations could affect the training stability
of VAI, since the RL policy network of VAI still needs to
handle foreground variations remaining in the foreground
mask. Namely, in the VAI that learns the policy network
using a foreground object extracted from an estimated mask

in an intensity domain (Figure 3 in [14]), the foreground
variations still hampers the policy learning, especially in the
presence of strong augmentations. Contrarily, EAR, which
excludes the environmental elements from the feature stage,
is always capable of conducting stable learning regardless of
the intensity of augmentation. Therefore, as validated in the
experiments, EAR improves stability significantly in both
training (Figure 3) and test (Table 2) under strong augmenta-
tions.

4. Ablation studies on data augmentation
4.1. Asymmetry of augmentation

In the field of self-supervised learning, it is widely known
that the degree of augmentation for source and target should
be asymmetric [5, 15, 16, 13]. Inspired by this insight that
keeping a relatively lower variance in the target encoder
can help representation learning, we employ an asymmetric
augmentation to the critic target encoder of soft actor critic
(SAC) [2] algorithm as below, applying strong augmentation
to the source input and weak augmentation to the target input,
respectively. The source input is used for the actor encoder,



Figure 3. Learning curves of EAR compared to VAI under the same degree of strong augmentations on DM Control Suite [12]. We report
mean and standard deviation over 5 random seeds. EAR improves training stability under strong augmentations.

Figure 4. Episode returns according to the degree of asymmetric augmentation on the DM Control Suite [12] randomized color tests over
5 random seeds. The performance of each task is presented separately for clarity. We found that weaker target augmentation does not
always result in better performance, but finding the appropriate threshold improves the performance of the proposed self-supervised learning
approach.

(a) Random box (b) Color jitter (c) Random convolution (d) Random overlay

Figure 5. Visualizations of data augmentations used in this abla-
tion. For all experiments in manuscript, we used (a) Random box
addition and (b) Color jitter. Note that ‘(a)+(b)’ is the experiment
presented in the original manuscript and VAI [14]. To ablate the
type of augmentations, we additionally applied two recently pro-
posed augmentation: (c) Random convolution and (d) Random
overlay in this experiment.

critic encoder, and our self-supervised encoder (Figure 2 of
original manuscript), while the target input is for the critic
target encoder.
Implementation. We provide Python-like implementation
for the asymmetry of augmentation. Specifically, in the

case of EAR, the strength of augmentation indicates the size
and number of random boxes, or the degree of change in
brightness and saturation.

1 ratio = 0.2 if target else 1
2

3 random_boxes = gen_random_boxes(
4 boxes=num_boxes * ratio,
5 mu=mu, sigma=sigma * ratio,
6 size_min=size_min,
7 size_max=size_max * ratio)
8

9 # [brightness, contrast, saturation, hue]
10 adjustment_params = random_sample()
11 adjustment_params =
12 [ap * ratio for ap in adjustment_params]

Figure 4 measured the episode returns according to the
asymmetric augmentation on the DM Control [12] random-
ized color tests over 5 random seeds. The X-axis represents
the degree of asymmetric augmentation related to the target,
in other words, the degree to which target augmentation is



Figure 6. Learning curves of EAR according to the choice of augmentations.

weaker than source augmentation. We found that simply
applying higher or lower intensity variations does not always
result in a performance gain. It is necessary to appropriately
control the strength of the augmentation for the source and
target images, respectively. Empirically, assuming that the
augmentation strength for the source input is 1, it was most
desirable to apply the strength of 0.2 to the target image in
EAR.

4.2. Choice of augmentation

For all experiments, similar to VAI [14] we applied ran-
dom box addition and color jitter (e.g., changes in brightness
and saturation) as augmentations. Merely, we used asym-
metric augmentation by increasing the degree of these aug-
mentations. However, the operation of EAR is regardless of
the choice of augmentation as its ultimate purpose is to learn
features in which environmental variations are removed, as
mentioned in Section 3.1 of the original manuscript. To
ensure this, we further ablated by using the two recently pro-
posed augmentation methods (random convolution [9] and
random overlay [4]) as A1 or A2 in the proposed method.
Figure 5 shows the visualizations of all data augmentations
used in this ablation.

Figure 6 provides training performance and sample ef-
ficiency of EAR implemented using the combination of 4
augmentations presented in Figure 5. For instance, ‘(a)+(c)’
corresponds to A1 = Random box, A2 = Random convolu-
tion. Most of the curves showed a similar distribution, which
reinforces the argument that the implementation of EAR
is not affected by the choice of augmentation. Meanwhile,
‘(b)+(c)’ achieves low sample efficiency and relatively slow
convergence tendency in most of the tasks, which is consid-
ered to be due to the similar attributes of two augmentations
(b) and (c). From this fact, we found that effective learn-
ing of EAR is possible when A1 and A2 have sufficiently
different disposition.

Table 3 illustrates the quantitative evaluation of episode
returns according to the combination of augmentations on
randomized color test of DM Control Suite [12] Generaliza-
tion Benchmark [4]. We report mean and standard deviation

over 5 random seeds. Generally, regardless of the choice of
augmentation applied, EAR achieves high generalization per-
formance. However, similar to the evaluation of sample effi-
ciency, the types of augmentation should be different enough
to lead to high generalization capability. Moreover, the two
newly proposed augmentations were effective, achieving the
highest test performance.

5. Experimental details

5.1. Hyperparameter

In table 4 we provide full hyperparameters for DM Con-
trol Suite [12] and DrawerWorld [14] experiments. In
both benchmarks, we followed the setting of PAD [3] and
VAI [14], which are empirically shown to be effective. For
detailed experimental environment, EAR was implemented
in Pytorch [10], and the speed in Table 1 was measured on a
single Titan RTX GPU.

5.2. Target feature for ESS

We followed the self-supervised literature [1] to compute
the target feature f̃EAF

t+1 of ESS module using the network
updated via the exponential moving average (EMA) as men-
tioned in Section 3.2 of the original manuscript. When the
base RL algorithm is soft actor critic (SAC) [2], the feature
of the critic target encoder can be reused as the target repre-
sentation for this constraint, instead of performing additional
computation for deriving the target feature.
Implementation. In order to express above explanation
in an easy-to-understand manner, we provide Python-like
implementation.

1 def ss_constraint(f_x1s, f_x2s):
2 f_x1 = F.normalize(f_x1s.float(), p=2.,
3 dim=-1, eps=1e-3)
4 f_x2 = F.normalize(f_x2s.float(), p=2.,
5 dim=-1, eps=1e-3)
6 loss = F.mse_loss(f_x1, f_x2,
7 reduction="none").mean()
8

9 return loss
10



Table 3. Test performance according to the combination of augmentations on randomized color test.

Augmentations Walker, walk Walker, stand Cartpole, swingup(a) (b) (c) (d)

✓ ✓ 922±37 972±11 884±39
✓ ✓ 917±12 979±7 881±17
✓ ✓ 894±51 964±30 841±45

✓ ✓ 835±68 973±19 812±40
✓ ✓ 857±65 973±28 856±34

✓ ✓ 929±26 975±9 892±27

Table 4. Hyperparameters used for DM Control Suite [12] and DrawerWorld [14] experiments.

Parameter Value
Observation Size (84, 84)
Observation Rendering (100, 100)
Stacked Frames 3
Weight parameter (α, β, γ) (0.01, 1, 10)

Action Repeat
2 (DMC-finger, DrawerWorld)
8 (DMC-cartpole),
4 (otherwise)

Discount Factor 0.99
Optimizer Adam
(β1, β2) → (πe, πa, πd) (0.9, 0.999)
(β1, β2) → (α) (0.5, 0.999)

Learning Rate (πe, πa, πd)
3e− 4 (DMC-cheetah),
1e− 3 (otherwise)

Learning Rate (α) 1e− 4
Batch Size 128
Replay Buffer Size 500000
Number of training steps 500000
Episode length 1000
πe, πd Update Frequency 2

Table 5. Detailed description of the proposed network architecture

Encoder (Ebase + Edis)

Layer Operations Input Output

Ebase

1 Conv(N32, K3, S2) - ReLU ot∼ot+M en1t
2 Conv(N32, K3, S1) - ReLU en1t en2t
3 Conv(N32, K3, S1) - ReLU en2t en3t
4 Conv(N32, K3, S1) - ReLU en3t en4t
5 Conv(N32, K3, S1) - ReLU en2t en5t
6 Conv(N32, K3, S1) - ReLU en2t en6t
7 Conv(N32, K3, S1) - ReLU en2t en7t
8 Conv(N32, K3, S1) - ReLU en7t ft

Efac

9 Conv(N16, K1, S1) - BN - ReLU - DropOut ft f1t
10 Conv(N16, K1, S1) - BN - ReLU - DropOut f1t f2t
11 Conv(N32, K1, S1) - BN f2t fEAF

t

Action Conditioned Prediction (ACP)

Layer Operations Input Output

1 Concatenate fEAF
t , ât conc

2 Conv(N96, K3, S1) - ReLU - BN conc conv1t
3 Conv(N32, K3, S1) - ReLU conv1t f̂EAF

t+1

11 target_feature = critic_target.encoder.outputs["
latent"]

12 query_feature = ACP(obs, action)
13

14 target_proj = target_projection(target_feature)
15 query_proj = query_projection(query_feature)

16 query_pred = query_prediction(query_proj)
17 L_ss = ss_constraint(query_pred, target_proj)

5.3. Network architecture

We provide detailed network architecture in Table 5. In
the case of encoder, we follow the structure of encoders
commonly used by off-the-shelf RL algorithms [8, 3, 7].
However, in order to separate an environment-agnostic fea-
ture, we split the network into a base encoder Ebase and a
feature factorization encoder Efac. This allows the model
complexity to remain unchanged as in Figure 2 by avoiding
the use of additional layers for the feature factorization.
Implementation. Since the layer of Efac has batch normal-
ization and dropout added to the layer of Ebase, we pro-
vide Python-like implementation of Efac for explicit expla-
nation. As validated in Figure 2, this modification causes
little change in the overall model complexity.

1

2 E_fac = nn.Sequential(
3 nn.Conv2d(32, 16, 3, stride=1, padding=1),
4 nn.BatchNorm2d(16),
5 nn.ReLU(inplace=False),
6 nn.Dropout(p=0.5),
7 nn.Conv2d(16, 16, 3, stride=1, padding=1),
8 nn.BatchNorm2d(16),
9 nn.ReLU(inplace=False),



(a) DeepMind Control Generalization Benchmark [4]: Randomized colors

(b) DeepMind Control Generalization Benchmark [4]: Video backgrounds

(c) Distracting Control Suite [11]: Camera poses (intensity=0.1)

(d) Distracting Control Suite [11]: Camera poses (intensity=0.2)

(e) Distracting Control Suite [11]: Camera poses (intensity=0.3)

(f) Distracting Control Suite [11]: Camera poses (intensity=0.4)

(g) Distracting Control Suite [11]: Camera poses (intensity=0.5)

(h) DrawerWorld robotic manipulation benchmark [14]: Texture backgrounds
Figure 7. Samples from the test environments used in our experiments, including DeepMind Control Generalization Benchmark [4],
Distracting Control Suite [11], and DrawerWorld [14] robotic manipulation tasks.



10 nn.Dropout(p=0.5)
11 nn.Conv2d(16, 32, 3, stride=1, padding=1),
12 nn.BatchNorm2d(32),
13 )

5.4. Examples for test environments

Figure 7 shows the samples from the test environment
used in our experiments, including DeepMind Control Gener-
alization Benchmark [4], Distracting Control Suite [11], and
DrawerWorld [14] robotic manipulation tasks. DeepMind
Control Generalization Benchmark [4] provides two distinct
benchmarks for visual generalization, (a) Randomized colors
and (b) Video backgrounds. Environment (a) randomizes the
color of floor, and background. Environment (b) replaces the
background with videos from real-life scenarios. For envi-
ronments (c)-(g), we used Distracting Control Suite [11] of
DM Control Generalization Benchmark [4], where camera
pose, background, and colors continually change throughout
episodes. The intensity indicates the degree of variations,
and we provide sample images with different intensities
I = {0.1, 0.2, 0.3, 0.4, 0.5}. In particular, when the inten-
sity is I = {0.5}, the camera pose changes significantly so
that the camera point is often positioned vertically above
the agent, as in the third example of (g). Under this strong
intensity change, most of the methods cannot work well,
as shown in Figure 7 of the original manuscript. We also
used DrawerWorld robotic manipulation benchmark [14] for
the environment (h), which measures generalization perfor-
mance on six different types of new texture environments:
Black, Blanket, Fabric, Metal, Marble and Wood includ-
ing both color change and texture change of background,
following the setup of [14].
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