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Figure A: Example of lens shading on white reference back-
ground and real examples. Note how the background white
wall becomes darker near the edge of the image.

A. Notes on Real-world Scenario
Dual-pixel data captured using commodity mobile

phones has high resolution (usually >12MP these days) and
goes through sophisticated sensor/AP ISP pipeline to re-
store and enhance the image quality. However, an autofocus
module is typically placed very early in the ISP pipeline,
and the lens control signal should be computed using the
RAW images, making the AF problem prone to spatially-
varying errors including lens shading, low-light noise, opti-
cal aberration, etc. In Fig. A, we show an example of lens
shading effects for (dual-pixel) RAW images captured with
a smartphone camera, which can be easily seen by captur-
ing a white reference background. We also visualize a real-
world sample RAW image captured with a Samsung Galaxy
S10 device1 (different from our training data, which is cap-
tured with a Google Pixel 3). We can clearly observe the
lens shading effects on the background white wall - the in-
tensity of the pixel values is spatially varying. This is one of
the major problems in the camera manufacturing industry,
and the capability of managing spatially-varying sources of
errors is an important problem in real-world scenarios.

B. Notes on Training Data
In this work, we use the public dataset introduced in Her-

rmann et al. [12]. Let us denote the dataset as L2A (from
1Following the data capturing process in [12], we obtain the dual-pixel

RAW image with the same Android Camera app settings.

the name of [12], “Learning to Autofocus”). While the de-
tailed descriptions can be found in [12], here we note some
important characteristics about the dataset to eliminate any
potential confusion.

First, L2A dataset is captured vertically, but the left-right
dual pixels are split along the direction of the longer edge
of the smartphone. In other words, the literal meaning of
left and right pixels is assuming a landscape mode of photo
capture; if the camera is placed vertically (also called por-
trait orientation), then the dual pixels calculate the disparity
along the vertical direction. We acknowledge that all of our
figures except Fig. 8(d) use the original photos captured in
portrait orientation, so the phase difference is detected along
the vertical direction. Figure 8(d), on the other hand, is the
only exception where the image (patch) is displayed by ro-
tating 90 degrees counter-clockwise. The reason for this
choice is to emphasize a common failure case of left/right
dual-pixel images, which is horizontal lines (given that a
photo is captured in landscape orientation). Note that a line
that is parallel to the stereo baseline is fundamentally im-
possible to calculate the disparity, and Fig. 8(d) is a good
example of such a difficult case.

Second, the ground truth label of L2A dataset is calcu-
lated with a multi-view stereo algorithm (COLMAP2 [51,
52]) from synchronized captures from 5 Google Pixel 3
smartphones, so there exist some labeling errors. Fig-
ure B illustrates a representative example of such er-
rors. Although we train and evaluate with only the valid
patches where the confidence of multi-view stereo calcu-
lation (COLMAP) is over the threshold, small amount of
label errors like Fig. B are inevitable and may affect our fi-
nal performance. In general, we observed labeling errors
for regions with little or no textures, and for regions where
focal breathing effect is more evident.

Third, we point out that the focal indices of 1∼49 are not
uniformly distributed across the possible focus distance or
the lens position, and the values are already accounted for
the near/far depth-of-field limits (with some overlaps). We
plot the relationship between the focus distance (in millime-
ters) and the focal index in Fig. C. The distance considered
in the L2A dataset ranges from 102mm ∼ 3910mm, where

2https://colmap.github.io/
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Figure B: A representative example of labeling errors in the
L2A dataset. The input focal index of 48 corresponds to
10.2cm focus distance, and the (calculated) ground truth
label of 0 corresponds to 3.9m physical depth. However,
given that the region of interest is the closest region of the
floor (marked with a yellow box), the actual depth is more
likely to be closer to our prediction, of which the index 17
corresponds to 27.4cm distance from the camera lens.

Figure C: Relationship between focal index (1 ∼ 49) vs.
focus distance (in millimeters). The values are inversely
proportional to each other.

the focal index of 1 corresponds to the furthest focus dis-
tance and the index 49 corresponds to the macro-shot cap-
ture of 102mm distance. While we illustrate the focal index
vs. distance in Fig. C, this relationship is actually inversely
proportional, and we can observe a linear graph if we take a
reciprocal of each distance value.

For more specific information on the dataset capturing
process and the calibration parameters, we refer the readers

to the dataset README3 of [12].
Here, we note that the choice of 49-index lens position is

not directly applicable when our input RAW image is cap-
tured with a different device. However, we can easily fix the
input preprocessing pipeline to make it applicable:

• If the target device uses the same image sensor (as
Google Pixel 3 in case of [12]), then we can perform
a simple calibration of the lens position to match our
49-index, which rectifies the fabrication bias.

• If the target device includes a different image sensor,
we also have to perform calibration to map the lens po-
sition into our 49 focal indices. Since each focal index
represents a corresponding focus distance, we can al-
ways perform device-dependent calibration to map the
lens position to match our 49-index.

C. Baseline Model Architecture
We illustrate the baseline network architectures used in

our AF model in Fig. D. We borrow the drawing conven-
tion in MCUNet [21]: 1) the inverted residual block from
MobileNet-v2 [32] is named as MB{expansion ratio}
{k}x{k}, where k is the convolution kernel size, 2) the
blocks with larger kernel size are colored darker, 3) the
striped boundaries denote the downsampling blocks with
stride=2, and 4) the width of each block corresponds
to the expansion ratio of the MB block. Note that our mod-
els use 5-channel inputs, while Herrmann et al. [12] uses
98-channel inputs (for dual-pixel data), which enabled us
to use × 1

4 number of channels for our MobileNet-based
model. When it comes to our MCUNet-based model, the
number of channels are reduced more extremely, and the
average expansion ratio for the MB blocks also gets smaller
(which also has the same effect of reducing the # of chan-
nels, since e.g. MB5 with 24 input/output channels includes
convolution layers with 1) 24 to 120 (=24×5) channels and
2) 120 to 24 channels).

D. Additional Results
Additional failure cases of our model are illustrated in

Fig. E.
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Figure D: Network architecture comparison. Our mod-
els (both MobileNet-v2 and MCUNet) significantly re-
duce the number of channels, resulting in much smaller
number of parameters, FLOPs, and peak memory us-
age. The main building blocks are the inverted residual
block from MobileNet-v2, and we express this block as
MB{expansion ratio} {k}x{k}, where k is the con-
volution kernel size. The blocks with larger kernel size are
colored darker, and the striped boundaries denote the down-
sampling blocks with stride=2.



Figure E: Additional failure cases of our AF model. We visualize the left image of the dual-pixel images.


