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1. Implementation Details

Our code was built on top of the MMPose[1] public
repository , and we used their built-in implementations for
the image backbone as well as the inference time analysis
tools. We plan to release our code, model checkpoints and
video results.

Backbone We use ResNet-50 [13, 3] as our back-
bone. On the Panoptic studio dataset, we use the check-
point trained for 20 epochs on the Panoptic Studio dataset
with 960 × 512 resolution images, introduced by the
VoxelPose[11] codebase for accurate comparison with ex-
isting methods. Since we use synthetic heatmaps for Shelf
and Campus, we use no backbone. On Human3.6M, we
use the pre-trained ResNet backbone from the Learnable
Triangulation [5] codebase. On all other datasets, we used
HRNet[10] with 384×384 resolution, with no pre-training,
following TesseTrack[9]. Following MvP [12], we use the
pre-final layer of the backbone model’s output head rather
than the final per-joint heatmaps. This pre-final layer has
256 channels for ResNet and 32 for HRNet. Detector
The person detector follows the design of [14]. We used
a fixed voxel size of 10 cm3. For dataset-specific train-
ing, we follow previous papers and used a volume size of
of 80 × 80 × 20, on the Panoptic Studio dataset. We use
the basic structure of V2V-Net [8], for the networks in this
stage, but in 2D and 1D. The building block of this net-
work consists of a convolutional block and a residual (skip-
connection) block, with a ReLU connection and Batch-
Norm. We first feed the input to the network through a layer
with a 7×7 kernel and then passed through three successive
blocks, each with 3 × 3 kernels, with maxpooling between
each block with kernel size 2. We then apply three trans-
posed convolutional layers to obtain a feature map with the
same spatial size as the input, to which we apply a 1 × 1
convolution to get the desired channel output size.

1.1. Cross-dataset Generalization

Pose Estimation and Forecasting The recurrent net-
work we used was based on the SpatialGRU implementa-

Component Time (ms) GFLOPs Params

Backbone 11.72 29.3 23.51M

Detector (FV) 17.3 1.204 1.51M
Detector(Ours) 17.3 1.204 1.51M

Pose (FV) 14.9 6.621 1.13M
Pose (Ours) 16.5 7.331 1.926M

Total (FV) 43.92 37.125 32.40M
Total 45.52 38.831 33.19M

Table 1. Runtime analysis of TEMPO compared with Faster Vox-
elPose (FV) [14]. Our model is competitive with Faster VoxelPose,
which is the state-of-the-art in efficiency. Our model achieves sig-
nificantly better pose estimation performance despite adding rela-
tively few parameters and without adding significant overhead.

Method Panoptic Human3.6M

MVPose 55.6 83.4
VoxelPose 17.68 273.2
Faster VoxelPose 18.26 283.1
TEMPO (Ours) 14.18 63.4

Table 2. TEMPO significantly surpasses optimization-based meth-
ods on datasets it was not trained on, despite their dataset-agnostic
design

tion used in FIERY [4] with a 2D LayerNorm based on the
official ConvNexT implementation [7].

At each timestep, the 2D projected features were fed into
an encoder with the same structure as the encoder portion of
the 2D CNN used in the detection stage. We then feed the
encoded features through the RNN, and run a 2D CNN with
the same structure as the detection network’s decoder. on
the hidden state output. The output of the decoder network
was fed into a learned weight network with the exact same
structure as in Faster VoxelPose [14].

We used 4 timesteps of input at training time, following
the augmentation scheme of BEVFormer, and the forecast-
ing output is 2 timesteps into the future, each 3 frames apart.
At inference time, we only feed a single timestep of input



Figure 1. Sample forecasting outputs on the Human3.6M dataset. Our model produces feasible forecasts up to 0.33 seconds into the future,
surpassing the accuracy of comparable works [15].

into the network, and TEMPO saves the previous embed-
ding features, matching them to detections at each timestep
with the tracker.

Training Details For the ResNet backbone, we trained
the entire network jointly to convergence for 10 epochs with
a batch size of 1. We used the Adam optimizer with weight
decay 1e-4, learning rate 1e-4, and applied a linear decay
schedule with γ = 0.7, updating every 2 epochs. We used
a batch size of 2 and trained the network for 20 epochs, and
used a learning rate of 5e-4, with all other parameters the
same. For the Panoptic, Human3.6M, and DynAct datasets,
we used images as input, while for the Shelf and Campus
dataset we followed the scheme of [11, 14, 9, 12] and used
synthetic joint heatmaps, produced by projecting ground-
truth poses from the Panoptic dataset onto the cameras in
the Campus and Shelf dataset.

2. Additional Ablation Details

2.1. Cross-dataset Generalization

Although TEMPO is not explicitly designed to provide
strong generalization across multi-view datasets, we found
that simply computing the space and volume dimensions
from the camera configuration, it was able to transfer sur-
prisingly well. In Table 2, we show that TEMPO exceeds
both VoxelPose and Faster VoxelPose in this regard. Fur-
thermore, TEMPO significantly exceeds the performance of

MVPose [2], a method that is based on graph optimization
and is dataset-agnostic by design, underscoring the strength
of volumetric pose estimation methods.

2.2. Inference Time

We conducted a more detailed inference time analysis,
comparing our work with Faster VoxelPose [14], the cur-
rent fastest method. Our results are shown in Table 1. In the
main text, we follow the convention of [14, 12, 6] and omit
the runtime of the image backbone. We include it here for
a full picture of our method’s speed. Since the image back-
bone time is dependent on the number of views, we used 5
views for testing, in line with the Panoptic Studio dataset.
We benchmarked all our models on a Nvidia A-100 with a
AMD EPYC 7352 24-Core Processor @ 2.3GHz CPU.

For each module in our model, we provide the inference
time, GFLOPs, and number of parameters. Since both ours
and Faster VoxelPose are top-down methods, the GFLOPs
and runtime vary with the number of detections. In this
analysis, we used 3 detections for both methods.

3. Sample Visualizations
We provide both sample visualizations of TEMPO’s

forecasting output on the Human3.6M dataset. In Figure 1
we show representative visualizations of the model’s fore-
casting output on the Walking sequence of the Human3.6M
validation set.
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