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A. Discussion on View Variance and Invariance

Naively mapping 2D sketches to 3D shapes is an ill-posed
problem due to the view variance problem – there exists
multiple drastically different 2D sketches drawn from dif-
ferent viewpoints for the same 3D shape. Prior literature
[31] circumvents this problem by converting the retrieval
task to the problem of matching a sketch to multiple (n ≥
24) 2D projections of a 3D shape, i.e., multi-view match-
ing problem. In particular, an average representation from
multiple 2D projections is computed using max-pool [27],
triplet-center loss [17], Wasserstein barycenters [30], or
attention-based pooling [23]. The objective is to compute a
view invariance matching loss between 2D sketches and 3D
shapes which helps overcome the view variance problem.
However, forcing view invariance limits to only category-
level sketch – shape matching [29, 11] thereby loosing cru-
cial fine-grained visual cues depicted in sketches.

In this paper, we address the view variance problem
without making unwanted assumption of using view invari-
ant representations. In particular, we employ the Blind
Perspective-n-Points algorithm [2, 3, 4, 6, 8] to solve for
pose (rotation, translation) and construct 2D-3D correspon-
dences. This helps “lift” [16] our 2D sketch to 3D space
instead of lowering a 3D shape to 2D space by computing
its view invariant representation.

B. Background of BPnP

The Blind Persoective-n-Points (BPnP) algorithm aims to
solve the camera pose from a set of unordered 3D points
in object space and their corresponding 2D points in im-
age space. Specifically, camera pose y = {R, t} is com-
posed of rotation R ∈ R3×3 and translation t ∈ R3×1

that aligns the 3D points with 2D points, without knowl-
edge of the true 2D-3D correspondence. This makes solv-
ing the BPnP problem quite challenging as the search space
of correspondence and camera poses is significantly large
with the non-convex objective function having many lo-
cal optima, and outliers. BPnP is fundamental in sev-

eral applications like computer vision, robotics, augmented
reality, and visual localisation. Given an image Ig, we
compute its feature representation using a 2D encoder as,
fIg = F2D(Ig). Next, we use a dense correspondence net-
work to predict a set of 3D points z = {z1, z2, . . . , zN} and
weights w = {w1, w2, . . . , wN} from sampled 2D points
x = {x1, x2, . . . , xN}, as {z,w} = Fdc(fIg ,x) in Eq. 7.

For an optimal pose y = {R, t}, BPnP [4] solves for the
second layer of optimisation that minimises the cumulative
squared weighted re-projection error given by Eq. 8 as,

ypred = argmin
y

1

2

N∑
i=1

||wi ◦ (π(Rzi + t)− xi)︸ ︷︷ ︸
Φi(y)

||2

However, Eq. 8 formulates a non-linear least squares prob-
lem that may have non-unique solutions, i.e., pose ambi-
guity. Hence, instead of backpropagating through unstable
local solutions, we take an alternative approach to model the
BPnP [4] output as a distribution of poses followed by com-
puting KL-divergence with ground-truth target distribution
p(ygt). We choose this target distribution as a narrow Dirac
delta distribution [8] to get unique solutions for pose using
Eq. 11, where each integral (re-projection at GT pose, re-
projection at predicted pose) follows a canonical solution.

C. Why non-unique in Eq. (8)?

To recap, the re-projection error is defined in Eq. 8 as,

ypred = argmin
y

1

2

N∑
i=1

||wi ◦ (π(Rzi + t)− xi)︸ ︷︷ ︸
Φi(y)

||2

Existing works on BPnP [4, 6] derive a single solution of a
particular solver y∗ = PnP (θ), where θ = {z,x,w} via
implicit differentiation [15]. This is essentially the Laplace
method that approximates the posterior by N (y∗,

∑
y∗),

where both y∗ and
∑

y∗ can be estimated by the BPnP
solver with analytical derivatives [7]. Simplifying

∑
y∗ to

be homogeneous (i.e., ignoring the variance of projection



error Lvar in Eq. 12), the approximated KL divergence in
Eq. 11 can be simplified to the L2 loss as,

LKL =
1

2

N∑
i=1

||Φi(ygt)||2 (15)

This leads to non-unique solutions since Laplace approx-
imation (Levenberg-Marquardt BPnP solver) only guaran-
tees local convergence. Hence, non-normal posteriors (with
ambiguous multiple modes) leads to inaccuracies when us-
ing LM solvers for global convergence.

D. Domain Adaptation versus Pivoting

Since the goal of pivoting is to bridge the domain gap be-
tween 2D sketches and 3D shapes, it is important to un-
derstand the subtle difference between pivoting and Do-
main Adaptation. Using DA instead of pivoting is chal-
lenging when the target domain is significantly different
from the source domain [12] e.g., sparse 2D sketch and
3D shapes. Nevertheless, we compare pivoting with alter-
native sub-space mapping like (i) Gradient Reversal Layer
(GRL) [1] that allows features to be indistinguishable be-
tween 2D sketch and 3D shapes, aligning the two. Replac-
ing pivoting with GRL drops Acc.@1/Acc.@5 for ‘Chairs’
in Qi et al. [23] to 32.73/65.13. Using kernel-based meth-
ods for like Optimal Transport [10], and MMD [28] to
minimise the distribution gap between 2D sketch and 3D
shape features drops Acc.@1/Acc.@5 to 30.56/64.92 and
27.72/63.45 respectively. Instead of directly aligning 2D
sketches with 3D shapes, as in naive DA, pivoting takes a
cascaded alignment process using a third (shared) domain
as pivot: (i) it aligns 2D sketch with 2D photos via training
with triplet loss (Lsrc→piv), (ii) aligns 2D rendered pho-
tos and its 3D shapes via triplet loss (Lpiv→trg), and (iii)
aligns the two metric spaces (Lsrc→piv,Lpiv→trg) via KL-
divergence term (Ldist) facilitating src → trg, i.e., 2D
sketch to 3D shape retrieval.

E. Why we report upper-bound/all-shot?

Our goal is zero-shot setup for fine-grained sketch-based
shape retrieval that overcomes the ill-posed problem of col-
lecting paired 2D sketches for 3D shapes. However, to
inform and encourage future research, it is important to
know the upper-bound performance when using paired 2D
sketches and 3D shapes as training data. Hence, we report
the upper-bound/all-shot performance in the experimental
sections. While our proposed pivoting + lifting can reach
competitive performance to the fully supervised counter-
parts, we hope future works will close the remaining perfor-
mance gap between Ours (zero-shot) and upper-bound/all-
shot methods.

F. PyTorch-like pseudo-code for training.

Algorithm 1: PyTorch code to solve Lreg

import math.log as log
import torch

# Download ops/pnp/* and models/* from
github.com/tjiiv-cprg/EPro-PnP

from camera import PerspectiveCamera
from cost fun import AdaptiveHuberPnPCost
from epropnp import EProPnP6DoF
from levenberg marquardt import LMSolver
import MonteCarloPoseLoss

def compute loss(fIg, x, ygt, **kwargs):
# fIg: Tensor of shape [nbatch, d]
# x: Tensor of shape [nbatch, K, 2]
# ygt: Tensor of shape [nbatch, 7]

# Predict dense correspondence in Eq.7
z, w, scale = Fdc(fIg ,x)
w = (w - w.mean(dim=1) - log(K))
w = w.exp()*scale

# Set Camera and PnP Loss parameters
cam = PerspectiveCamera(**kwargs)
mcposefn = MonteCarloPoseLoss(**kwargs)
costfn = AdaptiveHuberPnPCost(**kwargs)
costfn.set param(x, z)
pnpobj = EProPnP6DoF(

mc samples=512,
num iter=4,
solver=LMSolver(dof=6, num iter=5)

# Use AIMS and LM algorithm, Eq.12,13
, , y, , logw, ctgt =

pnpobj.monte carlo forward(
z, x, w, cam, pose init=ygt)

# Get losses
scaleD = scale.detach().mean()
loss mc = mcposefn(logw, ctgt, scaleD)

lt = (y[:, :3] - ygt[:, :3]).norm(2, -1)
beta = 0.05
loss t = torch.where(lt<beta,
0.5*lt.square()/beta, lt-0.5*beta)

loss t = loss t.mean()

quat = y[:, None, 3:] @ ygt[:, 3:, None]
quat = quat.squeeze(-1).squeeze(-1)
loss r = ((1 - quat.square())*2).mean()

Lreg = loss mc + 0.1*(loss r + loss t)
return Lreg

G. Performance on ‘Lamps’ is lower than ‘Chairs’

While our proposed method (pivoting + lifting) reaches
competitive performance for ‘Chairs’ category (Tab. 1, it is
comparatively lower for ‘Lamps’. This is because the train-
ing data [32] used in the pivoting (src → piv) step only
has ‘Chairs’ category and not ‘Lamps’. Achieving cross-



category generalisation (trained on ‘Chairs’ and evaluated
on ‘Lamps’) for fine-grained retrieval is still an open prob-
lem for multiple research fields like FG-SBIR (2D sketch
to 2D photos) and ours FG-SBSR (2D sketch to 3D shape).
Future work exploiting foundation models (having open-set
generalisation [21]) like CLIP [25] can help improve perfor-
mance fine-grained retrieval performance on both ‘Chairs’
and ‘Lamps’.

H. Evaluation on unseen 3D ‘Chairs’ sub-categories

Although our zero-shot setup gives competitive perfor-
mance for FG-SBSR without using paired 2D sketch and 3D
shapes, we further investigate if the proposed method gen-
eralises to unseen ‘Chairs’ sub-categories. Accordingly, we
manually remove 5 ‘Chairs’ sub-categories from the train-
ing set of pivoting [32] + lifting [5] and report their Acc.@1
as: armchair (55.01), X-chair (55.51), ladder-back (55.67),
bean chair (54.97), lawn-chair (55.84). This is comparable
to the zero-shot Acc.@1 in Tab. 1 of 55.79. This shows that
our proposed (pivoting + lifting) can generalise to unseen
3D ‘Chairs’ sub-categories.

I. Lifting versus directly regress 3D coordinates

While directly regressing the 3D coordinates to learn 2D-
3D correspondence might seem like an alternative, it does
not leverage the geometric priors [8]. Introducing the appli-
cations of the geometry-based Blind Perspective-n-Points
algorithm [4, 3] for fine-grained retrieval shape retrieval
helps to have a stable generalisation [8, 6]. We addition-
ally compare directly regressing 3D coordinates/shapes us-
ing baselines like SDFSketch and PSGNSketch in Tab. 1,2.

J. Summarising our Contributions

While our utmost contribution lie with democratising 2D
sketch to 3D shape fine-grained retrieval, as a new problem
setup – this was not possible before due to a lack of large-
scale datasets, and the large domain gap between 2D am-
ateur sketches and geometrically well-defined 3D shapes.
The neat bit is this was all achieved via a clever use of piv-
oting. We however still needed to (i) extend pivoting to
complex multi-modal setup with src (2D sketch), piv (2D
photo), and trg (3D shape) all from different modalities.
Also, neural machine translation (NMT) literature [9] used
pivoting in generative tasks whereas we adapt for discrim-
inative tasks; and (ii) reformulate BPnP, a technique as an
auxiliary task to inject 3D aware knowledge in 2D encoder
(sketch, and photo), thereby solving for data scarcity. In
contrast, prior works limited BPnP to pose prediction [6]
and 3D object detection [8].

K. Clarification on Lifting and Fig. 6

Our lifting loss (Lreg) is only used as an auxiliary loss dur-
ing training and not during inference, i.e., FG-SBSR. Al-

though not our primary goal (fine-grained retrieval), to ver-
ify that our 2D sketch and 3D shape latent space are in-
deed aligned and 3D aware, we additionally pass the en-
coded sketch feature fs through the dense prediction net-
work Fdc(·) and visually examine the predicted 3D points
z. A reasonable prediction of 3D coordinates in Fig.6 from
2D sketches verifies that the 2D sketch and 3D shapes are
indeed aligned (due to pivoting) and 3D aware (due to aux-
iliary lifting loss).

L. Category-level versus Fine-Grained retrieval

Ours (i.e., zero-shot) method comprising of pivoting + lift-
ing gives competitive performance for fine-grained sketch-
based shape retrieval (Tab. 1) but not so much for category-
level sketch-based shape retrieval (Tab. 2). This is because
(i) the valuable geometric constraints provided by our lift-
ing module – necessary for fine-grained retrieval [16] –
have limited use in category-level sketch-based shape re-
trieval. (ii) Collecting category-level sketch–shape data
is easier than for fine-grained setups. This led to large-
scale category-level sketch–shape datasets like SHREC’13
[18] and SHREC’14 [19]. Hence, our pivoting module
(that bridges 2D sketch and 3D shape domain gaps in data
scarcity scenarios) also has limited use.

M. Details of Point Sampling for BPnP

For images, we evenly sample (64× 64) points from which
512 Monte Carlo samples are selected for faster training.
This sampling strategy works for images, hence used in PnP
loss between the 3D model and its renderings (images). Al-
beit not our goal, we use the same sampling strategy on
rasterised sketches to visually examine if the reconstructed
3D shape is aligned with our 2D sketch. While our prim-
itive exploration of alternative sampling strategies like 2D
landmarks [6], minimal set [2] did not significantly improve
overall retrieval performance, future work could further
conduct a detailed analysis of alternative sampling strate-
gies and their effects on 2D images and sparse sketches.

N. Additional Ablation on Lifting

The motivation of lifting loss in Eq. 13 is to provide valu-
able geometric constraints necessary for fine-grained re-
trieval – “lift” 2D sketch to 3D space using the Blind
Perspective-n-Points (BPnP) algorithm as an additional
geometric constraint. Replacing BPnP in our proposed
method, we ablate using alternative methods to inject 3D-
aware knowledge, as (i) 2D sketch-to-3D Reconstruction
(3D Recon.) – using SDF [22] (as in SDFSketch), PSGN
[14] (as in PSGNSketch), and Voxel [13] representations.
(ii) Since directly predicting 3D shape from 2D sketch fea-
ture does not leverage geometric priors [8], we supervise
by predicting 3D pose from 2D sketch (Pose Pred.) – via
classifying (Class.) [20] input 2D sketch into 36 poses, or



directly regressing (Reg.) the 4DoF [26]. (iii) Finally, we
compare with our geometry (Geo.) based BPnP loss as,

Table 4. Ablative study for Lifting on ‘Chairs’ in [24].

Acc.@1
3D Recon. Pose Pred. Ours

SDF PSGN Voxels Reg. Class. Geo.

zero-shot 52.7 53.5 51.3 52.7 51.2 55.8
all-shot 57.4 58.0 56.4 57.3 56.2 58.5

O. Additional Clarification on Tab. 3

In Row-1 of Tab. 3, we use 804 paired sketch-3D shapes for
all-shot setting, but without pivoting or lifting to train 2D-
3D encoder. This gives a low Acc.@1 by 10.5. Adding
pivoting + paired sketch-3D shapes (all-shot) in Row-2
(thereby scaling train data with easy-to-collect 2D sketch-
photos) greatly improves Acc.@1 by 38.2. This shows the
impact of scaling train data using easy-to-collect sketch-
photo datasets and removing the dependency on 3D anno-
tations. Finally, pivoting + lifting + sketch-3D shapes in
Row-6 further improves Acc.@1 by 9.8.
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