
Supplementary Material:
Image-free Classifier Injection for Zero-Shot

Classification

In this supplementary material, we firstly in Sec. A provide
additional implementation details regarding the baselines
and our stopping criterion. In Sec. B, we combine applicable
baselines with ICIS and report the combined performance.
We report additional results for the I-GZSL task for an Ima-
geNet pretrained classification model in Sec. C. In Sec. D,
we show that the architectural additions of ICIS deal with
bias towards seen classes, a common issue of GZSL, despite
having no access to images. We finally provide an extended
analysis of a failure case of our model in the generalized
zero-shot task on CUB in Sec. E.

A. Additional implementation details

Implementation and adaptation of baselines. In this sec-
tion, we detail how the baselines used for comparison with
ICIS have been implemented (and potentially adapted) for
the image-free ZSL task.

ConSE: We follow the original implementation of [39],
using the classifier scores to perform a convex combination
of the class label embeddings.

COSTA: In [36], different co-occurrence similarities are
proposed. In our experiments, normalised co-occurrence
similarity led to the best results.

Sub. Reg.*: We adapt the subspace regularisers proposed
in [2] originally acting on model parameters, to instead serve
as an additional loss on the predicted classifiers during train-
ing. Concretely, we apply a projection matrix PS on the
predicted classifiers, and apply a loss based on the distance
d between the predicted and projected weights:

LSub.Reg. =
∑
u∈U

d(wu, P
T
S wu). (8)

The projection matrix PS is calculated from the existing clas-
sifiers of the seen classes. It projects a predicted weight wu

onto the subspace spanned by the existing seen class clas-
sifiers. We found that using the squared error, as originally
done in [2], worked the best.

wDAE*: In order to adapt the setup from [16] to the
I-ZSL setting, two primary changes were made. Firstly,
since image features are not available, classifier estimates
originally created by feature averaging are not accessible.
Therefore, we train a weight predictor to provide the initial
estimates. In the main paper, we use the MLP base model as
the initial predictor, but here in the supplementary material
we also report results when used in conjunction with ICIS
(Table 4). Secondly, for the proposed denoising autoencoder
(DAE) to be applicable in our setting, we adapt the loss
function for the model. Since we do not have access to

images to test downstram classification accuracy, we remove
the image-related term of Eq. (6). in [16], resulting in the
loss function

LwDAE =
∑
u∈U

d(wu,w
∗
u). (9)

Here, wu are the initially estimated weights, and w∗
u are the

reconstructed weights by the DAE, with d as mean squared
distance leading to the best downstream results.

VGSE (WAvg* and SMO*): We adapt the weighting
schemes of [61] to directly produce new classifiers. For
WAvg, we use the same hyperparameters as presented in the
paper. For SMO, we experimented with both α = 0 and
α = −1. However, α = 0 consistenly led to better down-
stream results, and all reported results are computed with
this value.

Stopping criterion. We take inspiration from [34], where an
early stopping criterion based on statistical properties of the
gradients was proposed. Here, we base our simple stopping
criterion on the slope of the training loss. Concretely, we
compute a running mean of the training loss over the latest 10
epochs, as well as the 10 previous epochs. We then compute
the (negative) slope between these averages, and compare
it to a threshold value which is set to 2 · 10−4. This value
was determined from the simple empirical observations that
higher values were too high (i.e. training was terminated
almost immediately across different architectures), while
lower values were too low (i.e. the slope rarely went below
the threshold, such that the training loop continued indefi-
nitely, despite the network already having converged). When
applying the mean squared error as the loss function (instead
of the cosine loss), the losses are smaller by a factor of ap-
proximately 10−3 and the threshold value is therefore then
scaled by this factor.

B. Improving baselines with ICIS
As the model components that ultimately make up ICIS

are orthogonal to Sub. Reg.* and wDAE*, we include results
using these baselines in combination with our ICIS frame-
work in Table 4. For the results reported under Sub. Reg.*
and wDAE*, the initial weight estimator network is an MLP
network with a similar structure as the descriptor-to-weights
mapping of ICIS (i.e. the MLP base model performance
from our ablation study). For this initial weight predictor,
Sub. Reg.* and wDAE* do not improve results, compared
to the results of the MLP base model by itself. Indeed, the
zero-shot accuracies generally drop (e.g. 41.3% to 37.6% on
CUB for Sub. Reg.*, as can be seen in Table 1 and Table 2
of the paper), and the harmonic mean does not increase.

However, if we apply ICIS to wDAE* and Sub. Reg*
together, we see consistent performance gains across all
datasets and setting. For instance, the zero-shot accuracy



Zero-Shot Accuracy Generalised Zero-Shot Accuracy

Method + ICIS CUB AWA2 SUN CUB AWA2 SUN
Acc Acc Acc u s H u s H u s H

Sub. Reg.* [2]
✗ 37.6 37.5 48.3 0.0 87.6 0.0 0.0 96.1 0.0 0.0 50.1 0.0

✓ 60.5 65.8 51.8 45.8 73.6 56.5 35.7 93.3 51.6 45.6 25.1 32.3

wDAE* [16]
✗ 38.2 37.0 49.9 0.0 87.3 0.0 0.1 96.0 0.3 0.0 49.3 0.0

✓ 60.4 65.1 51.9 46.1 73.1 56.6 36.0 93.3 52.0 45.1 25.5 32.6

Table 4: Improving downstream classification performance on ZSL benchmarks in the I-ZSL setting when combining existing
methods in the literature with our proposed ICIS framework. We measure the results as unseen accuracy (Acc) for the zero-shot
task, unseen (u) and seen (s) accuracy and their harmonic mean (H) for the generalised zero-shot setting. Methods marked
with * are adapted to the image-free setting.

increases of more than 20% on both AWA2 and CUB for
both methods, while on SUN the performance gain is at least
of 2%. The gap is even clearer in the generalised setting,
where Sub. Reg.* and wDAE* are able to correctly recognise
unseen classes only when coupled with ICIS, going from
0 harmonic mean to over 50 for CUB and AWA2, while
of more than 32 for SUN. These results provide further
evidence of how ICIS reduces the bias on seen classes in
image-free generalised zero-shot learning. Furthermore, they
demonstrate the flexibility of ICIS, being a simple approach
that can benefit the performance of other methods based on
classifier weights prediction.

C. Additional results
Here, we show results demonstrating the performance of

ICIS for different pre-training setups of the backbone, and
for the I-GZSL task on CUB for an ImageNet pretrained
model with injected CUB classifiers.

Firstly, we analyse the impact of varying the ResNet-101
backbone. In Table 1, the backbone is fine-tuned on the seen
classes of the ZSL datasets, as commonly done in the litera-
ture [58]. Alternatively, the classification head can be trained
while keeping the feature extractor frozen. We report results
for this option in the left column of Table 5 on CUB. We
observe that also when using an ImageNet-pretrained feature
extractor, ICIS still perform significantly better than compet-
ing methods in terms of both zero-shot accuracy (Acc) and
on the generalized I-ZSL task in terms of resulting harmonic
mean (H). Overall, the trend of the results do not change
between using a pre-trained and fine-tuned feature extrac-
tor. Curiously, the performance of some methods increase
slightly when using the ImageNet-pretrained classifier (e.g.
wDAE* [16] with Acc and H increasing from 38.2% and 0.0
to 40.0% and 4.1, respectively.

Secondly, we report I-GZSL results corresponding to Ta-
ble 3, i.e. the generalized zero-shot classification task for
an ImageNet pretrained model for which we inject classi-
fiers for classification on CUB in addition to classifying

Model CUB to CUB ImageNet to CUB
Acc H s u H

ConSE [39] 35.9 0.9 77.0 0.0 0.0

COSTA [36] 21.8 0.0 75.2 6.7 12.3

Sub.Reg.* [2] 40.3 4.7 77.4 0.0 0.0

wDAE* [16] 40.0 4.1 77.3 7.4 13.5

WAvg* [61] 2.0 1.8 77.4 0.0 0.0

SMO* [61] 39.3 32.2 70.0 2.5 4.9

ICIS (Ours) 50.8 41.2 77.3 11.6 20.2

Table 5: Left: CUB I-ZSL (Acc) and I-GZSL (H) results
using a frozen ResNet feature extractor pre-trained on Ima-
geNet. Right: I-GZSL results from ImageNet to CUB using
CLIP class label text embeddings. Methods marked with *
are adapted to I-ZSL.

ImageNet. The results are reported in the right column of
Table 5. We can see that the results from learning to in-
ject classifiers from a classifier trained on a semantically
unrelated dataset (in this case ImageNet) leads to lower re-
sults than when learning from a semantically related one (e.g.
CUB seen classes). However, ICIS is still able to infer and in-
ject classifiers for the generalized task that lead to non-trivial
performance on this difficult task (unseen accuracy 11.6%)
while maintaining an accuracy of 77.3% on the seen classes
(with the pre-trained ResNet model achieving a 77.4% seen
class accuracy before injecting additional classifiers).

D. Dealing with bias towards seen classes
For the generalised zero-shot classification problem, bias

towards seen classes is one of the primary challenges to
overcome. In the GZSL literature, a common techniques
to address this obstacle is to use seen and unseen class ex-
perts [9], or to introduce hyperparameters that reduce the
confidence for seen classes [5].

In the image-free I-ZSL setting, these options are not
applicable, since there is no access to samples on which
those options can be tuned. Instead, we show in the analysis
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Figure 5: Inference analysis of our model ablations on CUB.
We plot the mean entropy (calculated using loge) of the
output distributions over the test samples from both seen
and unseen classes. The cosine loss in particular has a large
impact on the injected weights dealing with bias towards
seen classes.

in Fig. 5 that each element of ICIS increases the average
entropy of the output distribution over the seen and unseen
class test samples in CUB, i.e. it reduces overconfidence
towards seen classes.

This analysis confirms the findings of the previous one in
Table 4, as the baselines (without ICIS) almost exclusively
predict seen classes in the I-GZSL setting. However, the
introduction of our framework’s components increase the
accuracy for unseen classes for the baselines notably, while
having only a small impact on the seen class accuracy.

E. Study of failure case
In this section, we study some shortcomings of ICIS on

a concrete example for the CUB dataset. Concretely, we
consider the behaviour of the injected weights on the class
for which they achieve the worst classification accuracy in
the downstream I-GZSL task.

Failures of injected weights in the generalised task. For
the unseen class Tree Sparrow, our ICIS injects classification
weights which correctly classify only 5% of the correspond-
ing samples for the generalised zero-shot classification task.
In Figure 6, we plot the predictions of our model for images
of this class.

For plotting the predictions, we count which classes were
predicted for the Tree Sparrow samples, and then divide
these counts by the total number of Tree Sparrow samples to
obtain class-wise empirical (mis)classification probabilities.
To get an understanding of the properties of the classes in
the dataset that the Tree Sparrow samples were misclassified
as, we rank all 200 classes in the CUB dataset based on
the cosine similarity between the attributes of Tree Sparrow,
and the attributes of each class in the dataset. For visualisa-
tion, we bin the classes in groups of 10, starting from the

most similar (i.e. Tree Sparrow itself) to the least similar
class in the dataset, summing up their empirical prediction
probabilities.

Figure 6 shows how the predicted classification weights
result in classifying primarily the most similar classes to Tree
Sparrow. This suggests that the predicted weights indeed
classify based on properties close to those of Tree Sparrow.

Figure 7 zooms in on just the classes that the Tree Sparrow
samples were misclassified as, revealing that the predicted
weights have a bias towards other unseen classes. Most
misclassifications are due to predicting other unseen and
similar classes, such as White-crowned Sparrow and Field
Sparrow. Similarly, misclassifications among seen classes
only occur on the two most similar classes to Tree Sparrow,
namely Chipping Sparrow and House Sparrow.

For reference, we show images of birds from the listed
classes in Figure 8. We include images from the two seen
classes confused with Tree Sparrow (i.e. Chipping Sparrow
and House Sparrow) as well as images from the two unseen
classes with the largest fraction of predictions (i.e. White-
crowned Sparrow and Field Sparrow). Although there are
distinctive differences between classes (e.g. the black and
white head of the White-crowned Sparrow, or the beak shape
and size of the House Sparrow), it is clear that the predicted
weights are capturing fundamental visual properties, but may
not be able to capture extremely fine-grained differences
among classes. Nevertheless, this indicates that ICIS has
indeed learned from the visual-semantic knowledge encoded
in the given classifier weights for seen classes.
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Figure 6: Overview of the failure case Tree Sparrow, where the injected weights for the generalised zero-shot task on
CUB only correctly classifies 5% of the samples. The x-axis indicates CUB classes ranked by the attribute similarity to Tree
Sparrow, while the y-axis shows the number of times an image of the class Tree Sparrow is assigned to a group of classes.
Most misclassifications are towards classes similar to the ground-truth one.
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Figure 7: Predicted classes in the failure case Tree Sparrow, where the x-axis indicates predicted CUB classes ranked by the
attribute similarity to Tree Sparrow, while the y-axis shows the frequency of an image of Tree Sparrow being assigned to a
group of classes. The misclassifications are distributed mostly between classes of other unseen (dashed) Sparrow-classes, as
well as the two seen classes (solid) that are the closest to Tree Sparrow in terms of attributes.
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Figure 8: Images from the seen and unseen classes most consistently confused with Tree Sparrow by the classification
weights predicted by our ICIS model.


