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A. Proofs

A.1. Proof of Lemma 3.1

Proof. Let ypy(y) = f(x), zpz(z) = g(x), x ∼ px(x). For
the case m = 1, the expectation of y and z can be written
respectively as:

E[y] = E[f (x)] =

∫
px(x)f(x)dx

E[z] = E[g (x)] =
∫

px(x)g(x)dx

(1)

According to the zero-order condition, we have f(x) ≈
g(x). And p(x) is same for both y and z, so E[y] ≈ E[z].

Now we prove V ar[y] ≈ V ar[z]. Note that V ar[y] =

E
[
y2

]
− (E[y])2 and V ar[z] = E

[
z2
]
− (E[z])2, thus we

only need to prove E
[
y2

]
≈ E

[
z2
]
. It can be similarly

proved as follows:

E
[
y2

]
=

∫
py(y)y

2dy =

∫
px(x)f

2(x)dx

E
[
z2
]
=

∫
pz(z)z

2dz =

∫
px(x)g

2(x)dx

(2)

According to the zero-order condition, we have V ar[y] ≈
V ar[z].

For the case of m = 2, when the two paths are both
selected, the output becomes y + z, its expectation can be
written as:

E[y + z] = E[y] + E[z] ≈ 2E[y] (3)

And the variance of y + z is,

V ar[y + z] ≈ V ar[2y] = 4V ar[y] (4)

Therefore, there are two kinds of expectations and vari-
ances: E[y] and V ar[y] for {y, z}, and 2E[y] and 4V ar[y]
for {y + z}. Similarly, in the case where m ∈ [1, n], there
will be m kinds of expectations and variances.

B. Algorithms

Algorithm 1 : Stage 2-NSGA-II search strategy.

Input: Supernet S, the number of generations N , popula-
tion size n, validation dataset D, constraints C, objective
weights w.
Output: A set of K individuals on the Pareto front.
Uniformly generate the populations P0 and Q0 until each
has n individuals satisfying Cacc, CFLOPs.
for i = 0 to N − 1 do
Ri = Pi ∪Qi

F = non-dominated-sorting(Ri)
Pick n individuals to form Pi+1 by ranks and the crowd-
ing distance weighted by w.
Qi+1 = ∅
while size(Qi+1) < n do
M = tournament-selection(Pi+1)
qi+1 = crossover(M)
if FLOPs(qi+1) > FLOPssmax

then
continue

end if
Evaluate model qi+1 with S (BN calibration is rec-
ommended) on D
if acc(qi+1) > accmin then

Add qi+1 to Qi+1

end if
end while

end for
Select K equispaced models near Pareto-front from PN

C. Experiments details

C.1. Search Spaces

We show the list of used search spaces in Table 1.

C.2. More experiments

We further search directly in S4. To be comparable, this
case is formulated as a single objective optimization problem:
finding the best model with known ground truth (94.29%)



Space Dataset m Size Details
S1 CIFAR-10 1 812 There are 12 stacked inverted bottleneck blocks.

Kernel sizes are in (3, 5, 7, 9), and expansion rates
are in (3, 6).

2 3612

3 9212

4 16212

S2 ImageNet 2 1018
There are 18 stacked inverted bottleneck blocks.
Kernel sizes are in (3, 5, 7, 9). Expansion rate is
fixed following MixNet.

S3 ImageNet 1 25618

There are 18 stacked mobile inverted bottlenecks.
Depthwise layer channels are divided into 4 groups
and there are 4 choice kernel sizes (3, 5, 7, 9) for
each group. Expansion rate is also fixed as above.

S4 CIFAR-10 4 255

There are 9 stacked cells, each with 5 internal
nodes, where the first 4 nodes are candidate paths.
Each node has 3 operation choices (1 × 1 Conv,
3×3 Conv, 3×3 Maxpool). See Fig. 6 (main text).

Table 1: Four search spaces used in this paper. m is the maximum number of allowed paths per layer

in the space. As a strong baseline, we run DARTS [6] three
times using different seeds. The result is shown in Table 2.
Our method obtains 94.22% within 5 GPU hours, which
outperforms DARTS with a large margin.

Table 2: Search results on the reduced NAS-Bench-101. The
accuracy of known optimal is 94.29%.

Method Top-1 Acc Search Cost
(%) (GPU Hours)

DARTS [6] 79.42±0.23 7
Ours 94.22±0.06 5

We also use m = 3 and perform multi-path supernet
training in DARTS space. Then we search for the optimal
sub-model with 60 generations. The total search cost is 0.5
GPU days and MixPath achieves a competitive 97.5% test
accuracy with only 3.6M parameters on CIFAR10.

C.3. Transferring to CIFAR-10

We also evaluated the transferability of MixPath models
on CIFAR-10 dataset, as shown in Table 3 (main text). The
settings are the same as [2] and [3]. Specifically, MixPath-b
achieved 98.2% top-1 accuracy with only 377M FLOPS.

C.4. Transferring to object detection

We further verify the transferability of our models on
object detection tasks and we only consider mobile settings.
Particularly, we utilize the RetinaNet framework [4] and
use our models as drop-in replacements for the backbone
component. Feature Pyramid Network (FPN) is enabled for
all experiments. The number of the FPN output channels is

Backbones ×+ P Acc AP AP50 AP75 APS APM APL

(M) (M) (%) (%) (%) (%) (%) (%) (%)

MobileNetV3 219 5.4 75.2 29.9 49.3 30.8 14.9 33.3 41.1
MnasNet-A2 340 4.8 75.6 30.5 50.2 32.0 16.6 34.1 41.1
SingPath NAS 365 4.3 75.0 30.7 49.8 32.2 15.4 33.9 41.6
MixNet-M 360 5.0 77.0 31.3 51.7 32.4 17.0 35.0 41.9
MixPath-A 349 5.0 76.9 31.5 51.3 33.2 17.4 35.3 41.8

Table 3: COCO Object detection with various drop-in back-
bones

256. The input features from the backbones to FPN are the
output of the depth-wise layer of the last bottleneck block in
four stages, which covers 2 to 5.

All the models are trained and evaluated on the MS
COCO dataset [5] (train2017 and val2017 respectively) for
12 epochs with a batch size of 16. We use the SGD opti-
mizer with 0.9 momentum and 0.0001 weight decay. The
initial learning rate is 0.01 and multiplied by 0.1 at epochs
8 and 11. Moreover, we use the MMDetection toolbox [1]
based on PyTorch [7]. Table 3 shows that MixPath-A gives
competitive results.

C.5. Comparison of search strategies

We show the Pareto front of models searched by NSGA-II
vs. Random in Fig. 1.

C.6. More statistics analysis on SBNs

To further confirm our early postulation, we train MixPath
supernet in the search space S1 on CIFAR-10, allowing the
number of activable paths m = 3 and m = 4. Other settings
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Figure 1: Pareto-front of models by NSGA-II vs. random
search.
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Figure 2: A t-SNE visualization of first-layer multi-path
features before and after SBNs. We randomly sample 64
samples to get these features. Dots of the same color indi-
cate the same multi-path combination. SBNs make distant
features from multi-path combinations similar to each other
(see closely overlapped dots on the right). Best viewed in
color.

are kept the same as the case m = 2. The relationship of
parameters in SBNs is shown in Fig. 3. As expected, SBNs
capture feature statistics for different combinations of path
activation. For instance, the mean of SBN3 is three times
that of SBN1. The similar phenomenon can be observed in
other layers as well, for instance, the statistics of the 6-th
and 11-th layer are shown in Fig. 4.

SBNs have a strong impact on regularizing features
from multiple paths This is more obvious when we draw
a t-SNE visualization [8] of first-layer feature maps from
our MixPath supernet (m = 4) trained on CIFAR-10 in
Fig. 2. Before applying SBNs, features from different path
combinations are quite distant from each other, while SBNs
close up this gap and make them quite similar.

C.7. Cosine similarity and feature vectors on NAS-
Bench-101

We also plot the cosine similarity of features from differ-
ent operations along with their projected vectors before/after
SBNs and vanilla BNs on NAS-Bench-101 in Fig. 6. We can
see that not only are the features from different operations
similar, but so are the summations of features from multiple
paths. At the same time, SBNs can transform the amplitudes
of different vectors to the same level, while vanilla BNs can’t.

This is similar to the situation in the search space S1 and
matches with our theoretical analysis.

C.8. Searched architectures on CIFAR-10 and Im-
ageNet

The architectures of MixPath-c, MixPath-A and MixPath-
B are shown in Fig 5.
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(b) m = 4

Figure 3: Parameters (µ, σ2, γ, β) of the first-layer SBNs in MixPath supernet (in S1) trained on CIFAR-10 when at most
m = 3, 4 paths can be activated. SBNn refers to the one follows n-path activations. The parameters of SBN3 and SBN4 are
multiples of SBN1 as expected.
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0 100 200 300

Channel

-0.0

0.0

0.0

µ

SBN1

SBN3

0 100 200 300

Channel

0.000

0.001

0.002

σ2

SBN1

SBN3

0 100 200 300

Channel

0.04

0.06

0.08

γ

SBN1

SBN3

0 100 200 300

Channel

−2

0

2

β

×10−8

SBN1

SBN3

0.30 0.32 0.34 0.36 0.38

Ratio (µ)

0

20

F
re

q
u

en
cy SBN1/SBN3

0.12 0.13 0.14 0.15

Ratio (σ2)

0

50

F
re

q
u

en
cy SBN1/SBN3

0.8 0.9 1.0 1.1 1.2 1.3

Ratio (γ)

0

20

F
re

q
u

en
cy SBN1/SBN3

−1 0 1 2

Ratio (β)

0

10

F
re

q
u

en
cy SBN1/SBN3

(b) Layer 11

Figure 4: Parameters (µ, σ2, γ, β) of the SBNs of the 6th and 11th layer in MixPath supernet (in S1) trained on CIFAR-10
when at most m = 3 paths can be activated. SBNn refers to the one follows n-path activations. The parameters of SBN3 are
still multiples of SBN1 as expected.
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Figure 5: The architecture of MixPath-c (top), MixPath-A (middle) and MixPath-B (bottom). MixPath-B makes use of feature
aggregation and outperforms EfficientNet-B0 with fewer FLOPS and parameters.



Figure 6: (a) Cosine similarity of first-block features from the supernets trained on NAS-Bench-101 with and without SBNs
(b) Feature vectors projected into 2-dimensional space.


