
Supplementary Material of Rethinking Fast Fourier Convolution in Image

Inpainting

Figure 1: Visualization of frequency domain characteristic. The first row shows the corresponding spectrum (normalized

to 0-255) of the original image x. The brighter part of the spectrum represents the higher frequency value, and vice versa.

The second row shows the spatial images corresponding to different processed spectrum, including removing low-frequency

information, removing high-frequency information, and removing spatial information with the same size. The third row

shows the effects of ReLU function on the spatial and frequency domain. The fundamental frequency represents the average

value of all pixels in the spatial domain.

1. Characteristic of Frequency Domain

Fig. 1 demonstrates the frequency domain characteris-

tics mentioned in our paper. 2D Fourier transform can be

seen as an extension of the vanilla Fourier transform in the

time domain (1D). Each position in the spectrum can be re-

garded as orthonormal bases representing a special pattern

(Fig. 2), and the value in the spectrum represents the weight

of the basis. Weighted bases are added to obtain the inverse

transformed image. 2D DFT and 2D inverse DFT can be
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Figure 2: The result of enhancement of a certain position in

spectrum. Each position in the spectrum represents a spe-

cific pattern.

expressed as:
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The spectrum obtained after the Fourier transform of the

real number matrix has a dual property. It can be repre-

sented by half the size of the original spectrum. The dual

property can be expressed as:

X = DFT (x), x ∈ R
H×W

Re (Xj,k+1) = Re (Xj,W−k)

Im (Xj,k+1) = −Im (Xj,W−k)

(3)

In which Re and Im represent the real and imaginary parts

of complex numbers, j = 1, . . . , H, k = 1 . . . ,W//2.

For a spectrum transformed by real DFT, the upper left

and lower left corners represent low frequencies, and the

middle right represents high frequencies. Low frequency

contributes most of the information of the image and vice

versa. It can be seen from the figure that removing the low-

frequency information has a greater impact on the image

than that on the high-frequency information. Selectively re-

moving high-frequency information is also the method used

by widely used image compression algorithms (e.g., JPEG).

It can be seen from Fig 1 that when the low-frequency

information with a size of 10x10 (0.08% of spectrum size)

is zeroed, the inverse-transformed image produces severe

artifacts, while when the high-frequency information of the

same size is zeroed, the inverse-transformed image does not

produce any significant changes.

2. “Simple Network” Experiment

We expect to intuitively show the characteristics of

different modules in capturing texture patterns. In this

experiment, we trained three networks on DTD [2] and

CelebA [5], respectively. The difference between the three

networks is only in the calculation module of the middle

layer, and the amount of parameters of these modules is

similar. For the spatial module, we use ResBlock. Since

proposed in [4], ResBlock has been used as the default

module in most high-level and low-level vision tasks. A

lot of work has proved its effectiveness. Chi et al. [1]

introduced frequency method into the fully convolutional

network. Still, since the FFC design includes the general

convolution branch and the Fourier convolution branch (re-

fer to Fig. 4 for details), it cannot guarantee that the tex-

ture extraction ability only comes from the Fourier convolu-

tion. Therefore, we use only the Fourier convolution branch

(FourierUnit+local FourierUnit) for comparison in this ex-

periment. L-1 loss and VGG-based perceptual loss [7] are

used in this experiment. Please note that in order to avoid

the contribution of the upsampling operation itself (e.g., de-

convolution, pixel-shuffle) to the texture capture ability, the

low-resolution features are directly projected to the RGB

space through bilinear upsampling and single channel-wise

fully connection (channelFC/conv1x1) layer. The generated

inpainting results are inevitably blurred.

It can be seen from Fig. 6 that the frequency method

(FourierUnit) can capture the global pattern faster than the

spatial method under the same training settings because the

texture of a specific pattern will generate a large activation

value at a specific location in the spectrum. Spatial meth-

ods, on the other hand, require models that are deep enough

and have a large enough receptive field to capture these pat-

terns. For samples with larger masks, the simple network

with spatial modules can only fill the limited missing ar-

eas by diffusing the content around the mask. In some in-

painting results, the area corresponding to the center of the

mask does not produce any content. However, Since there

is no consistent correspondence between the statistical char-

acteristics of the spatial domain and the frequency domain,

frequency methods cannot achieve faithful reconstruction,

especially for color. It can be seen from Fig. 6 row 1 that

FourierUnit suffers from severe color shift. Compared with

the previous two methods, our proposed method can take

into account the reconstruction ability of ResBlock and the

texture capture ability of FourierUnit.

In our paper, we proved that the use of dilated convolu-

tion in range inverse transform could replace the function

of Local FourierUnit without losing 3/4 channel. However,

it is difficult to directly demonstrate the ability of range in-

verse transform to generate repeated textures after the net-

work is trained. Fortunately, in the artifacts produced by

some test samples at the beginning of training, we found



Figure 3: Illustration of “Simple Network” experiment. To remove the effect of extraneous irrelevant factors, we design

a rather simple network (a) consisting of only 2*channel-mapping layers, 2*non-learning up/down-sampling layers, and

8*computational modules. The general convolution branch of FFC is removed, and only the branch related to frequency

calculation is kept. (b) Widely used spatial module ResBlock. It has been widely used and proved effective in both high-level

and low-level vision tasks since proposed in [4]. (c) Recently proposed frequency module for high-level vision tasks [1]. (d)

Our proposed module.

Figure 4: The FFC module includes a Fourier convolution

branch (Semi-global / global branch) and a general convolu-

tion branch (local branch). The Fourier convolution branch

includes a parallel FourierUnit and a local FourierUnit. Fig-

ure borrowed directly from [1].

evidence of repeated patterns, as shown in Fig. 5, which cor-

responds to the conclusion dilation rate c ⇔ Repeatc×c in

our paper.

3. More Experiments

The experimental platform used in our paper is

ubuntu22.04, torch1.8.0, training on 2*NVIDIA RTX3090

GPU. For works with open-source models, we use the pre-

trained models uploaded by the author. For works that lack

open-source models or have obvious performance prob-

lems with open-source models, we retrain the models if the

Figure 5: Inpainting results with artifacts in the early train-

ing stage (5000iter). Convolutions with a dilation rate of 2

in the frequency domain enable the network the ability to

generate 2× 2 repeating patterns.

model can be trained on our devices.

Quantitative experimental results of Paris Streetview [3]

are shown in Tab. 1. For the user study, we randomly select

twenty sets of samples on each dataset and invite fifteen

people to choose the sample they think has the best inpaint-

ing quality.

For more inpainting results, please refer to Fig. 7 ,8,

and 9. For failure cases, please refer to Fig. 10.

4. Limitation

The input of our inpainting model is only a degraded

image with the corresponding mask (there is no additional

noise). Our inpainting model cannot produce diversity as

LaMa [8]. In addition, for an extremely large-scale mask,



Table 1: Quantitative evaluation of different models on Paris Streetview [3] dataset. Please note that the red letters represent

the lack of corresponding open source models. The models trained on places2 are used for testing.

Paris Streetview

mask method U-IDS↑ SSIM↑ PSNR↑ FID↓

<50%

LaMa [8] 22.34 0.81 27.71 26.01

MAT [6] 24.99 0.78 26.37 27.77

Co-Mod [9] 18.53 0.78 24.08 32.08

MADF [11] 19.06 0.78 26.90 28.85

EdgeConnect [7] 17.00 0.79 26.57 31.77

Ours 25.53 0.84 28.18 23.56

>50%

LaMa [8] 18.74 0.80 24.63 35.75

MAT [6] 16.17 0.79 25.04 49.51

Co-Mod [9] 17.92 0.79 24.11 85.53

MADF [11] 16.69 0.78 24.65 47.64

EdgeConnect [7] 15.21 0.77 23.30 53.79

Ours 21.85 0.82 25.57 30.36

Table 2: Quantitative evaluation on GLaMa-style mask.

Places2 CelebA DTD

LaMa Ours LaMa Ours LaMa Ours

FID↓ 96.48 64.01 74.76 32.77 86.10 43.28

spectrum L1↓ 2991.54 1773.00 2748.02 1684.78 2141.91 1387.38

Table 3: User Study

MAT [6] Co-Mod [9] LaMa [8] Ours

Places2 [10] 32% 23% 8% 37%

CelebA [5] 29% 18% 12% 41%

DTD [2] - - 15% 75%

our method tends to produce monotonous content. Al-

though MAT [6] and Co-Mod GAN [9] will produce arti-

facts or meaningless contents in many cases, it cannot be

ignored that they can produce sharp and rich content in all

mask modes.
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Masked Ground Truth ResBlock FourierUnit Unbiased FourierUnit

Figure 6: A rather image inpainting network. Intuitively show the texture capture and expression capabilities of different

modules. Our method efficiently captures texture patterns and produces clean inpainting results.
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Figure 7: Image inpainting results on CelebA [5].



Figure 8: Image inpainting results on Places2 [10] and Paris Streetview [3]. The inpainting results of LaMa tend to be grayish

in the central area of large masks, while our method does not have this problem.



Figure 9: Image inpainting results on DTD [2].

Figure 10: Failure cases. For some samples (such as faces or bodies in places2, profile faces in CelebA), our method prone

to artifacts. We speculate that this is due to the bias of content distribution in training set.


