
A2Q: Accumulator-Aware Quantization with Guaranteed Overflow Avoidance
Supplementary Material

Ian Colbert, Alessandro Pappalardo, Jakoba Petri-Koenig
Advanced Micro Devices, Inc.

{icolbert, alessand, jakobap}@amd.com

A. Motivating Example Details

Figure 1 illustrates a simplified abstraction of accumu-
lation in QNN inference. To avoid overflow, the register
storing the accumulated values needs to be wide enough
to not only store the result of the dot product, but also all
intermediate partial sums. Reducing the precision of the
accumulator incurs a high risk of overflow which, due to
wraparound two’s complement arithmetic, introduces nu-
merical errors that can degrade model accuracy [17]. To
demonstrate the impact of overflow, we consider a 1-layer
linear quantized neural network (QNN) trained to classify
binary MNIST [5] images using 8-bit weights. We flat-
ten each gray-scale 28x28 image so that the inputs to the
model are 784-dimensional vectors of 1-bit unsigned inte-
gers. Keeping with our notation used throughout our paper,
this translates to N=1, M=8, and K=784. We train this
8-bit linear classifier using the baseline quantization-aware
training (QAT) algorithm and observe a 91.5% top-1 test
accuracy when using a 32-bit accumulator.

Using our accumulator bit width data type bound, we
calculate the lower bound on P to be 19 bits. Figure 2 shows
the rate of overflows per dot product grows exponentially as
we reduce the accumulator bit width below this bound. Our
evaluation on the impact of overflow consists of two mea-
sures: (1) the mean absolute error on logits as measured
between P -bit and 32-bit accumulator results; and (2) the
top-1 classification accuracy of the P -bit accumulator re-
sult. We observe that the increased overflow rate introduces
numerical errors that proportionally increase the mean ab-
solute error on the logits, decreasing classification accuracy.

We first evaluate the default wraparound two’s comple-
ment arithmetic (black stars), which is known to introduce
errors that degrade model accuracy [4, 15, 17, 23]. Next, we
evaluate naı̈vely saturating values as they are accumulated
(blue triangles), which is the industry standard for avoiding
overflow. While previous work has shown that overflow ul-
timately degrades model accuracy due to wraparound two’s
complement arithmetic [4, 17], they do not benchmark
against this standard clipping solution, likely because it is

N-bit Input DataM-bit Weights

P-bit Accumulator

Requantize

N-bit Output Data

K Times

Previous Layer

Next Layer

Figure 1: A simplified illustration of fixed-point arithmetic
in neural network inference. The accumulator bit width (P )
needs to be wide enough to fit the dot product between the
M -bit weight vector and the N -bit input vector, which are
assumed to both be K-dimensional.

expensive to model with off-the-shelf deep learning frame-
works. We show that such clipping can alleviate the ac-
curacy degradation caused by wraparound arithmetic, but
still introduce harmful errors. Finally, we benchmark our
accumulator-aware quantization (A2Q) method (green cir-
cles) and re-train the 8-bit linear classifier from scratch us-
ing the target accumulator bit width P and the same ran-
dom seed. We show that using A2Q to avoid overflow sig-
nificantly improves model accuracy over both wraparound
arithmetic and clipping when using extremely low-precision
accumulators. Furthermore, we find that, in our exper-
iments, the overflow rate very quickly grows past 10%,
which is the point at which Wrapnet reports training insta-
bility [17]. Even in those settings, A2Q maintains accuracy
with respect to the floating-point counterparts, which fur-
ther motivates the need to completely avoid overflow rather
than simply reduce its impact on model accuracy.



10 12 14 16 18
Accumulator Bit Width

0

1

2

3

4

5

Ov
er

flo
ws

 p
er

 D
ot

 P
ro

du
ct Wrap

Clip
A2Q

10 12 14 16 18
Accumulator Bit Width

0

200

400

600

800

1000

M
ea

n 
Ab

so
lu

te
 E

rro
r

Wrap
Clip
A2Q

10 12 14 16 18
Accumulator Bit Width

20

40

60

80

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

Wrap
Clip
A2Q

Figure 2: We evaluate the impact of overflow as we reduce
the accumulator bit width using a 1-layer QNN trained to
classify binary MNIST [5] images using 8-bit weights. We
show that using A2Q (green dots) to avoid overflow sig-
nificantly improves model accuracy over both wraparound
arithmetic (black stars) and clipping (blue triangles) when
using extremely low-precision accumulators.

A.1. Impact of Breaking Associativity

In applying clipping, the final result of the dot product
is made dependent on the order of additions, thus breaking
associativity. This can introduce non-deterministic errors
when modern processors use optimizations that improve
hardware utilization by re-ordering operations (e.g., out-
of-order execution [12] or cache swizzling [6]). In Fig. 3,
we show how randomly re-ordering the additions in the dot
product affects the mean absolute error on the logits (left)
and classification accuracy (right). We compare modeling
overflow at the outer-most loop using only the dot product
result (red dashed line) against modeling overflow at the
inner-most loop, which accounts for the intermediate par-
tial sums (blue histogram). We also provide the baseline
classification accuracy as reference (black dashed line).

800 850 900
Mean Absolute Error

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

y 
De

ns
ity

Outer
Inner

60 80
Classification Accuracy (%)

Baseline
Outer
Inner

Figure 3: We visualize the impact of re-ordering additions
when using saturation logic on the accumulator.

B. Experiment Details and Hyperparameters
Below, we separately detail our image classification and

single-image super resolution benchmarks. For all mod-
els, we fix the input and output layers to 8-bit weights
and activations for all configurations, as is common prac-
tice [7, 11, 24]. We also weight our regularization penalty
by a constant scalar λ=1e-3 where Ltotal = Ltask + λLreg.

B.1. Image Classification Benchmarks

We train MobileNetV1 [10] and ResNet18 [8] to clas-
sify images using the CIFAR10 dataset [14]. We closely
follow the network architectures originally proposed by the
respective authors, but introduce minor variations that yield
more amenable intermediate representations given the re-
duced image size of CIFAR10 images [14]. We initialize all
models from floating-point counterparts pre-trained to con-
vergence on CIFAR10 and evaluate task performance using
the observed top-1 test accuracy.

MobileNetV1. We use a stride of 2 for both the first
convolution layer and the final average pooling layer. This
reduces the degree of downscaling to be more amenable to
training over smaller images. All other layer configurations
remain the same as proposed in [10]. We use the stochastic
gradient descent (SGD) optimizer to fine-tune all models for
100 epochs in batches of 64 images using a weight decay of
1e-5. We use an initial learning rate of 1e-3 that is reduced
by a factor of 0.9 every epoch.

ResNet18. We alter the first convolution layer to use a
stride and padding of 1 with a kernel size of 3. We remove
the preceding max pool layer to reduce the amount of down-
scaling throughout the network. We also use a convolution
shortcut [9] rather than the standard identity as it empiri-
cally proved to yield superior results in our experiments.
All other layer configurations remain the same as proposed
in [8]. We use the SGD optimizer to fine-tune all models for
100 epochs in batches of 256 using a weight decay of 1e-5.
We use an initial learning rate of 1e-3 that is reduced by a
factor of 0.1 every 30 epochs.

B.2. Single-Image Super Resolution Benchmarks

We train ESPCN [20] and UNet [19] to upscale single
images by a factor of 3x using the BSD300 dataset [16].
Again, we closely follow the network architectures origi-
nally proposed by the respective authors, but introduce mi-
nor variations that yield more hardware-friendly network
architectures. We randomly initialize all models and train
them from scratch. We empirically evaluate task perfor-
mance using the peak signal-to-noise ratio (PSNR) ob-
served over the test dataset.

ESPCN. We replace the sub-pixel convolution with a
nearest neighbor resize convolution (NNRC), which has
been shown to reduce checkerboard artifacts during train-
ing [18] and can be efficiently executed during infer-
ence [3]. All other layer configurations remain the same
as proposed in [20]. We use the Adam optimizer [13] to
fine-tune all models for 100 epochs in batches of 16 images
using a weight decay of 1e-4. We use an initial learning rate
of 1e-4 that is reduced by a factor of 0.98 every epoch.

UNet. We use only 3 encoders and decoders to create a
smaller architecture than originally proposed by [19]. We
replace transposed convolutions with NNRCs, which are



Code Generation
Optimizations &
TransformationsFINN Frontend

QNN Description Internal Representation
Architecture Choice

with Specified
Precisions

Custom Hardware with
Runtime Environment

(a) FINN Framework Overview

Weight Memory Threshold Memory

Matrix-Vector Activation Unit

PE #1

PE #2

PE #P

...

SIMD
Lanes

Input Buffer Output Buffer

(b) MVAU

Figure 4: We adapt images from [2, 21] to provide: (a) an overview of the FINN framework; and (b) an abstraction of the
matrix-vector-activation unit (MVAU), which is one of the primary building blocks used by the FINN compiler.

known to be functionally equivalent during inference [3],
but have more favorable behavior during training [18]. We
replace all concatenations with additions and reduce the in-
put channels accordingly. We use the Adam optimizer to
fine-tune all models for 200 epochs in batches of 16 using a
weight decay of 1e-4. We use an initial learning rate of 1e-3
that is reduced by a factor of 0.3 every 50 epochs.

C. Generating Accelerators with FINN
FINN [2, 21] is an open-source framework designed

to generate custom QNN inference accelerators for AMD-
Xilinx FPGAs. For a given QNN, the FINN framework,
depicted in Fig. 4a, generates a specialized accelerator us-
ing spatial streaming dataflow architectures that are indi-
vidually customized for the network topology and the data
types used. At the core of FINN is its compiler, which em-
powers flexible hardware-software (HW-SW) co-design by
allowing a user to have per-layer control over the generated
accelerator. Weight and activation precisions can be indi-
vidually specified for each layer in a QNN, and each layer
is instantiated as its own dedicated compute unit (CU).

As an example of a layer instantiated as its own CU,
we provide a simplified abstraction of the matrix-vector-
activation unit (MVAU) in Fig. 4b. The MVAU is one of the
primary building blocks used for linear and convolutional
layers [2]. Each CU consists of processing elements (PEs),
which parallelize work along the output dimension, and
single-instruction multiple-data (SIMD) lanes, which paral-
lelize work along the input dimension. All quantized mono-
tonic activation functions in the network are implemented
as threshold comparisons that map high-precision accumu-
lated results from the preceding layer into low-precision
output values. During compilation, batch normalization, bi-
ases and even scaling factors are absorbed into this thresh-
old logic via mathematical manipulation [22]. The input
and output data for the generated accelerators are streamed
into and out of the chip using AXI-Stream protocols while
on-chip data streams are used to interconnect these CUs

to propagate intermediate activations through the layers of
the network. During inference, all network parameters are
stored on-chip to avoid external memory bottlenecks. We
refer the reader to [1, 2, 21] for more information.

References
[1] AMD-Xilinx. FINN: Dataflow compiler for QNN inference

on FPGAs. https://github.com/Xilinx/finn, 2023. Accessed:
2023-01-19. 3

[2] Michaela Blott, Thomas B Preusser, Nicholas J Fraser,
Giulio Gambardella, Kenneth O’brien, Yaman Umuroglu,
Miriam Leeser, and Kees Vissers. FINN-R: an end-to-end
deep-learning framework for fast exploration of quantized
neural networks. ACM Transactions on Reconfigurable Tech-
nology and Systems (TRETS), 11(3):1–23, 2018. 3

[3] Ian Colbert, Kenneth Kreutz-Delgado, and Srinjoy Das. An
energy-efficient edge computing paradigm for convolution-
based image upsampling. IEEE Access, 9:147967–147984,
2021. 2, 3

[4] Barry de Bruin, Zoran Zivkovic, and Henk Corporaal. Quan-
tization of deep neural networks for accumulator-constrained
processors. Microprocessors and Microsystems, 72:102872,
2020. 1

[5] Li Deng. The MNIST database of handwritten digit images
for machine learning research. IEEE Signal Processing Mag-
azine, 29(6):141–142, 2012. 1, 2

[6] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen.
Sparse GPU kernels for deep learning. In SC20: Interna-
tional Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 1–14. IEEE, 2020. 2

[7] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. A survey of quanti-
zation methods for efficient neural network inference. arXiv
preprint arXiv:2103.13630, 2021. 2

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In European



conference on computer vision, pages 630–645. Springer,
2016. 2

[10] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 2

[11] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Quantized neural networks:
Training neural networks with low precision weights and
activations. The Journal of Machine Learning Research,
18(1):6869–6898, 2017. 2

[12] David R Kaeli, Perhaad Mistry, Dana Schaa, and Dong Ping
Zhang. Heterogeneous computing with OpenCL 2.0. Morgan
Kaufmann, 2015. 2

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2

[14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 2

[15] Haokun Li, Jing Liu, Liancheng Jia, Yun Liang, Yaowei
Wang, and Mingkui Tan. Downscaling and overflow-
aware model compression for efficient vision processors. In
2022 IEEE 42nd International Conference on Distributed
Computing Systems Workshops (ICDCSW), pages 145–150.
IEEE, 2022. 1

[16] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In Proc. 8th Int’l Conf. Computer Vision, vol-
ume 2, pages 416–423, July 2001. 2

[17] Renkun Ni, Hong-min Chu, Oscar Castañeda Fernández,
Ping-yeh Chiang, Christoph Studer, and Tom Goldstein.
Wrapnet: Neural net inference with ultra-low-precision
arithmetic. In International Conference on Learning Rep-
resentations ICLR 2021. OpenReview, 2021. 1

[18] Augustus Odena, Vincent Dumoulin, and Chris Olah. De-
convolution and checkerboard artifacts. Distill, 1(10):e3,
2016. 2, 3

[19] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 2

[20] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1874–1883, 2016. 2

[21] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella,
Michaela Blott, Philip Leong, Magnus Jahre, and Kees Vis-
sers. FINN: A framework for fast, scalable binarized neural
network inference. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Ar-
rays, FPGA ’17, pages 65–74. ACM, 2017. 3

[22] Yaman Umuroglu and Magnus Jahre. Streamlined de-
ployment for quantized neural networks. arXiv preprint
arXiv:1709.04060, 2017. 3

[23] Hongwei Xie, Yafei Song, Ling Cai, and Mingyang Li. Over-
flow aware quantization: Accelerating neural network infer-
ence by low-bit multiply-accumulate operations. In Proceed-
ings of the Twenty-Ninth International Conference on Inter-
national Joint Conferences on Artificial Intelligence, pages
868–875, 2021. 1

[24] Xinyu Zhang, Ian Colbert, and Srinjoy Das. Learning low-
precision structured subnetworks using joint layerwise chan-
nel pruning and uniform quantization. Applied Sciences,
12(15):7829, 2022. 2


