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Figure 1: Model averaged performances over domain. We can observe how HAMLET reaches state-of-the-art accuracy,
while running more than 6× faster. Adaptive models are displayed in blue, while models trained on source, without adapta-
tion, are displayed in black. On the left we show averaged performances over all domains, on the right we show how metrics
drop in the hardest domain (200mm). The metric drop is limited for strong adaptive networks CoTTA [9], and HAMLET,
while being a drastic drop for TENT [8] and SegFormer [10] (both MiT-B1 and MiT-B5). Finally, CoTTA real-time shows
the performance of CoTTA in deployment conditions, hence running once every 50 frames.

This report introduces further details on the ICCV paper - “To Adapt or Not to Adapt? Real-Time Adaptation for Semantic
Segmentation”. On the cover of this document, Figure 1, we propose a comparison of HAMLET (Hardware-Aware Modular
Least Expensive Training) against state-of-the-art adaptation strategies, hence showing its highly favorable trade-off between
speed and accuracy.

Then, starting with Section 1 we present an ablation study on the Hardware-Aware Modular Training (HAMT) method,
where we show several speed-accuracy trade-offs. In Section 2 we dive deep in the Least Training (LT) and Adaptive Learning
Rate (ALR) methodologies. We illustrate the behavior of different policies by comparing them on the same domain shift,
and we also show how the policy copes with noisy domain shift detection. In addition, we present a quantitative analysis
focusing on both speed and accuracy. A deeper analysis of the effect of the adaption on every single class is presented in
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Section 3. Then, in Sections 4 and 5 we detail the model implementation and the chosen hyperparameters. In Section 6
we provide extensive studies on additional storms as presented in the OnDA benchmark [5]. We particularly focus on the
behavior of repeated adaptation cycles and how they affect domain shift detection (hence ALR policies). Then, in Section
7 we illustrate additional experiments on the SHIFT dataset [6]. We first present a plot summarizing the model behavior
on SHIFT and then we analyze how LT could prevent forgetting in long sequences without relevant domain shifts. We
conclude by reporting some qualitative results in Section 8, and by referencing the qualitative videos uploaded on Youtube in
Section 9. The first qualitative video (https://www.youtube.com/watch?v=zjxPbCphPDE&t=139s) showcases
a comparison between HAMLET, CoTTA, and SegFormer MiT-B1 (no adaptation) on a Cityscapes [2] sequence with the
Incremental Storm. Finally, we argue that synthetic data could only partially provide evidence of our methods: purposely,
we run HAMLET on a real driving video taken in Korea across different rainy domains – https://www.youtube.
com/watch?v=Dwswey-GqQc, whose author gave us consent to use it – to further support its effectiveness. The second
qualitative video (https://www.youtube.com/watch?v=zjxPbCphPDE) shows the outcome of this experiment.

1. Ablation study: Hardware-Aware Modular Training
In this section, we present an additional ablation study on the HAMT module to further investigate its performance.

Table 1 reports the adaptation results achieved by different configurations that exploit HAMT alone, without Active Training
Modulation being enabled. We focus on the average adaptation performance and results on the hardest domain (200mm)
and source domain (clear) to respectively measure the effectiveness of the adaptation scheme on the hardest domain and the
robustness when adapting back on the source domain. Additionally, we report the framerate achieved by each configuration
and the GFLOPS performed to backpropagate gradients through SegFormer.

We compare the Full training model (A) to several configurations that use a random sampling policy to pick which module
to optimize (B, C, D, E) and HAMT sampling strategy (B’, C’, D’, E’), characterized by uniform sampling – not hardware-
aware – (B, B’) or by setting β equal to 2.75, 1.75, or 1 for time conditioning, respectively, for entries (C, C’), (D, D’), and
(E, E’). We also include a time-conditioned random sampling policy that uses softmax of the measured FPS for each action,
with the temperature controlled by the same parameter β introduced in HAMT. The time-conditioned random sampling is
achieved by skewing the uniform distribution with a softmax of the measured FPS for each action, effectively making more
likely to pick an action, the faster it is. The softmax temperature is controlled by the same parameter β introduced in HAMT.
This allows us to compare how HAMT performs compared to a simpler baseline bound to achieve similar FPS, nevertheless,
the action choice will not be controlled by HAMT reward-punishment algorithm, but it will be randomly sampled.

As expected, we find that the most aggressive GFLOPS reduction corresponds to lower β values, but this comes with
a price in metrics. Our observations show that even the naı̈ve hardware-aware random policy can significantly reduce the
GFLOPS dedicated to backpropagation without drastic metric drops. However, given the same β, HAMT policy always
results in better performance than the naı̈ve time-conditioned policies, both on hard domains (200mm of rain), the source
domain (clear, 0mm of rain), and on average (F and T to signal forward and backward adaptation). As reported in the main
paper, we set β = 1.75 as the default choice in any other experiments, allowing for a trade-off between GFLOPS reduction
and adaptation effectiveness.

We can notice how the gain lead by HAMT over the naı̈ve the metrics is more prominent for high values of β (i.e. less
intense time conditioning) since it leaves to the reward-punishment algorithm more freedom of action to pick the best modules
to train.

Overall, our ablation study shows that HAMT can effectively reduce the computational cost of adaptation without com-
promising accuracy. HAMT is especially useful when facing harsh and frequent domain shifts, where adaptation cannot be
easily interrupted. Moreover, our study provides insights into the impact of time conditioning on the performance of HAMT
and the importance of setting appropriate values of β.

Focus: Why are we using the 2nd derivative and not the 1st? Since every action corresponds to an optimization step,
we expect that every action will minimize the loss function. Therefore, on average, all actions would receive positive rewards.
This might lead to the model repeatedly taking the same action, moreover, we want to reward only those actions which are
leading to a sharper loss reduction compared to the other optimization alternatives. Indeed the 2nd derivative will be positive
only if the loss minimization has been greater than the expected linear extrapolation.

2. Ablation study: Active Training Modulation
We now focus on studying variations and single components of the policy we defined in Section 3.3 of the main paper.

Specifically, with reference to the notation in Section 3.3, we define 5 different policy variants in an incremental manner, by
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clear . . . 200mm h-mean Backward % Backward
F B F F B T GFLOPS GFLOPS

(A) Full training 73.5 73.2 62.6 68.7 71.0 69.8 30.8 100.0
(B) Random policy (uniform) 73.5 72.9 . . . 61.6 68.2 70.4 69.3 22.6 73.5
(B’) HAMT (no time conditioning) 73.5 73.1 61.9 68.4 70.4 69.4 22.4 72.9
(C) Random policy (time-conditioned β = 2.75) 73.5 73.0 . . . 59.0 67.5 70.1 68.8 21.4 69.5
(C’) HAMT β = 2.75 73.4 73.2 61.1 68.0 70.3 69.1 21.3 69.3
(D) Random policy (time-conditioned β = 1.75) 73.3 72.8 . . . 59.9 67.6 70.4 69.0 20.7 67.3
(D’) HAMT β = 1.75 73.6 72.9 60.9 67.8 70.4 69.1 20.3 65.8
(E) Random policy (time-conditioned β = 1) 73.1 72.6 . . . 60.2 67.6 70.0 68.8 19.4 63.1
(E’) HAMT β = 1 73.2 72.7 60.0 67.6 70.1 68.9 17.7 57.6

Table 1: Ablation studies – HAMT module (3.2). We report adaptation results on the Increasing Storm, achieved by
exploiting different HAMT configurations. We also report the framerate, as well as the GFLOPS required to perform the
backward pass during optimization.

assuming:
I) Constant learning rate and a number of iterations proportional to |∆Bi|. In this policy, it is assumed that the

length of the adaptation window should grow with the intensity of the observed domain shift with respect to z, the minimum
|∆Bi| that trigger adaptation. We then compute the number of adaptation iterations as L = Kl

|∆Bi|
z with the factor Kl and

the learning rate η kept constant. If new domain shifts are detected before the end of the adaptation windows, the remaining
iterations are accumulated.

II) Constant initial learning rate with decay inversely proportional to |∆Bi|. In addition to the previous policy, now
the learning rate η gradually decays until the adaptation is stopped, the smaller the domain shift, the faster the decay. The
initial learning rate Kη is kept constant.

III) Initial learning rate proportional to |∆Bi| with constant number of adaptation interations. This policy assumes
to always adapt for a fixed amount of steps, hence L is fixed. However, the initial learning rate is proportional to the intensity
of the measured domain shift |∆Bi| with respect to the minimum detectable shift z. Therefore, the initial learning Kη , is
computed as Kη = Pη

|∆Bi|
z , where Pη is a constant that defines the minimum value of Kη .

IV) Number of iterations proportional to |∆Bi|, and initial learning rate proportional to the discretized distance
B. This policy follows II), yet assuming an initial learning rate Kη that is higher for domains farther from the source.

Kη = Kη,min +
(Bi −Bsource)(Kη,max −Kη,min)

Bhard −Bsource
(1)

where Bsource (resp. Bhard) is an estimate of B when the network is close to (resp. far from) the source domain; and Kη,min
(resp. Kη,max) is the value of Kη assigned when the network is close to (resp. far away from) the source.

V) Number of iterations proportional to |Si|, direction sensitive, and initial learning rate proportional to the dis-
cretized distance B. This is the policy applied in the main paper, building upon policy IV). Here we use a variable mul-
tiplicative factor for the number of iterations Kl which depends both on both the distance from the source domain and the
direction of the domain shift. The rationale is that domain shifts moving away from the source domain are likely to require a
deeper and longer adaptation window. On the contrary, domain shifts moving closer to the source domain require fewer and
fewer adaptation steps as we get closer. This is because the model shows good recalling of previously experienced domains
as well as presenting strong performances close to the source thanks to regularization strategies we put in place.

K̃l =

{
Kl,max if Si ≥ 0

Kl,min +
(Bi−Bsource)(Kl,max−Kl,min)

Bhard−Bsource
otherwise

(2)

Where Kl,min (resp. Kl,max) is the value of K̃l assigned when the network is close to (resp. far away from) the source
domain. We will appreciate how this last policy results in the best trade-off between accuracy and speed.

In Tab. 2 we showcase the results achieved on the Increasing Storm by different instances of SegFormer, according to the
policy variants outlined so far. In (A) full training is performed, while in (B) and (C) we propose two baselines where we
naı̈vely optimize the model every 15 and 20 frames respectively, or by implementing our policies (I-V). As for HAMT,
we report performance on clear and 200mm domains, as well as the average forward, backwards and total mIoU together
with the framerate. As expected, reducing the adaptation steps to one every 15 or 20 frames definitely increases the FPS,



clear . . . 200mm h-mean FPS
F B F F B T

(B) Train every 15 iterations 73.2 73.3 . . . 53.3 64.1 68.3 66.2 26.5
(C) Train every 20 iterations 73.2 73.0 50.2 63.2 67.9 65.5 34.0
(I) Adapt. iter. (constant η) 73.4 72.8 55.6 65.5 69.3 67.4 25.3
(II) Adapt. iter. 73.4 73.1 . . . 58.5 66.5 69.7 68.1 25.2
(III) Adapt. η 73.4 71.4 55.4 65.3 67.9 66.6 31.0
(IV) Adapt. iter. and η 73.4 73.2 57.9 66.0 70.0 68.0 23.4
(V) Adapt. iter. and η, dir. sensitive 73.4 73.2 57.8 66.0 69.0 67.5 29.1

Table 2: Ablation studies – Active Training Modulation (3.3). We report adaptation results on the Increasing Storm,
achieved by exploiting different Active Training Modulation policies (I-V), together with framerates.

Domain Model Rider M.bike Sky Road Truck S.walk Wall Veget. Fence Tr.Light Terrain Bus Car Train Sign Build. Person Pole Bike mIoU

clear (both) 53.5 61.6 94.4 98.0 77.5 83.2 56.4 92.0 53.3 62.8 63.7 78.3 93.6 56.0 72.9 91.5 76.2 57.3 72.1 73.4

50mm No adapt. 43.8 44.5 83.5 96.3 67.1 73.2 32.5 88.0 43.4 54.0 50.6 70.5 90.6 51.1 67.5 86.3 70.1 40.4 65.7 64.2
50mm HAMLET 49.0 45.4 92.1 97.2 68.5 78.7 45.2 90.1 48.1 56.3 55.8 73.0 90.5 55.5 68.7 89.1 71.2 45.2 66.7 67.7

100mm No adapt. 30.0 24.1 37.2 92.6 54.4 57.6 19.3 80.6 30.1 41.9 40.0 58.2 85.1 45.7 60.5 75.6 63.9 28.6 58.4 51.8
100mm HAMLET 41.6 48.3 90.6 96.8 70.0 76.1 44.5 88.7 46.7 48.3 57.9 70.7 89.5 53.1 64.3 87.5 67.7 38.3 63.5 65.5

200mm No adapt. 11.7 3.7 1.9 81.9 25.1 25.3 7.8 59.5 9.4 21.8 19.5 33.4 59.2 21.3 45.5 59.2 50.9 14.8 40.1 31.2
200mm HAMLET 36.2 32.9 85.4 96.1 65.8 71.6 33.1 86.1 40.8 38.5 53.6 69.2 86.7 35.9 57.5 84.4 62.9 29.2 59.1 59.2

Table 3: Single classes mIoUs. Results on single classes by the source model on clear and 200mm, and by HAMLET on
50mm, 100mm, 200mm (Incremental storm, forward pass). The improvements achieved with online adaptation are consistent
all across the board.

nevertheless it also notably reduces the overall adaptation effectiveness – in particular on the hardest domain of 200mm, with
a drop of around 10% compared to full training. To attain a better accuracy-speed trade-off, we employ our policies: we
can appreciate how (II) allows for the best overall adaptation performance as well as over 200m of rain while achieving the
lowest FPS among the policies. Using (III) we obtain the highest FPS while losing accuracy both on average mIoU and when
returning back to the source – specifically, resulting in the worse policy in backward adaptation. Policy (IV) provides for
the best backward adaptation results, at the expense of forward adaption and average performance. Finally, (V) balances all
of the aspects considered before, while being the second fastest configuration among those considered. We also highlight
how these policies merely represent examples of potential uses of the domain detection signals and how even a simple active
training configuration policy could enable very fast and effective adaptation processes.

In Figure 2 we provide insight into the Active Training Modulation mechanism. In the top row, we exemplify two simple
domain shift sequences: from clear weather to 50mm to clear (on the left) and a much more sudden change, from clear
weather to 200mm to 75mm (on the right). In the second row, we display H , denoised in A (third row) and discretized in B
(fourth row). We then display S = ∆B (fifth row) acting as the first derivative of B over time frames. On the left, the domain
shift is correctly detected as a single domain shift. This is visible by having a single spike in S. On the other hand, in the
harder scenario (on the right), the domain shift is detected in two consecutive steps. We could define this as a false positive
detection. The rows below show how the ALR policies manage the training phases and the learning rate modulation. We
remind the reader that when the learning rate is zero, the training phase is inhibited. We notice how the policy formulation
can withstand the double-detection of the domain shift by simply recomputing the learning and accumulating the residual
iterations, overall presenting a robust behaviour.

3. Single Classes Analysis
In Table 3 we present the per-class mIoU of HAMLET and a model just trained on the source domain (No adapt.). We

present results on the source domain, where the two models are equivalent, and in the 50mm, 100mm, and 200mm domains
of the forward pass of the Incremental Storm [5]. As expected HAMLET vastly improves the non-adapted baseline on each
domain, in every single class. Interestingly, we see that HAMLET improvement is not just on a few classes, but instead, all
classes are improved by a consistent amount. As expected some classes are more impacted by the domain change, such as the
Sky and rare classes (e.g. M.bike, Rider, Fence), while some others present greater robustness (e.g. Road, Vegetation, Car,
Person).
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Figure 2: Focus on the mechanism of domain detection signals and relative adaptation process for each applied policy.

4. Model Setup: Additional Information
In this section, we present additional information on the UDA model and backbone used and provide details about the

lightweight decoder.
Let x ∈ RCin×H×W denote an input image and y ∈ [0, 1]C×H×W denote a segmentation label with C number of classes.

Let DS = {(x(i)
S , y

(i)
S }

ns
i=1 be the labeled source dataset and DT = {x(i)

T }
nt
i=1 the unlabeled target dataset encounter during

deployment, which may contain multiple sequential domains. Our goal is to train a model fθ that predicts the probability of
each class in each pixel of the input image, such that fθ(x) ∈ RC×H×W .

To this end, we use a student-teacher scheme with parameters θ for the student model and parameters θ′ for the teacher
model. During each training iteration i, we optimize the student by minimizing the loss function in Eq. 3. The teacher is
updated as an EMA of the student weights fθ (Eq. 4) where α is the decay rate of the EMA.

L(i) = L(i)
S + L(i)

T + λFDL(i)
FD (3)

θ′
(i+1) ← αθ′

(i)
+ (1− α)θ(i) (4)

The training loss in Equation 3 is a combination of three terms. The first term, LS , is a supervised term used to learn the
semantic segmentation task using the replay buffer from the labeled dataset and a Cross-Entropy loss. The second term is



Figure 3: Adaptive Domain Detector. We attach a SegFormer all-MLP decoder after the first module mfd
1 . This allows us

to obtain segmentation maps of any image at a low cost and with very limited speed impact.

a self-training loss that is learned from the target dataset, and the third term is a feature distance loss used as a regularizer.
We perform self-training by training the student model fθ on a strongly augmented version of the target dataset, along with
one-hot encoded pseudo-labels generated by the teacher. The augmented images are generated by mixing randomly selected
classes from the source image with target images following ClassMix [4]. LT is the cross-entropy between the mixed image
and the mixed label weighted by factor qT , as the ratio of the pixels that have a confidence level higher than a certain threshold.
To prevent the student network’s weights from deviating significantly from a pre-trained model on the source dataset (static
teacher), we incorporate a feature distance loss, denoted as LFD, in the training process. Specifically, the feature distance
loss is computed by taking the features produced by the student network’s encoder fθ and those produced by a static teacher
network with frozen weights on a given input sample, and measuring the Euclidean distance between the feature embeddings
generated by these two networks.

For our domain adaptive detector, we utilize SegFormer [10] as a semantic segmentation backbone, incorporating both its
encoder and decoder design. We modify the static teacher model f fd by connecting an extremely lightweight segmentation
head, denoted as dfd1, after the first encoder module m1fd, resulting in hfd1 = dfd1 ◦mfd1. This lightweight segmentation
head follows the SegFormer decoder architecture, using an all-MLP decoder that takes feature encodings from mfd1 with C1

channels and produces segmentation maps using only MLP layers (as illustrated in Fig. 3).

5. Implementation details
We report any hyper-parameters used to train the described methods. The supervised models were trained using SegFormer

pre-trained weights for 100’000 iterations (selecting the checkpoint with the best validation accuracy) using a learning rate of
6× 10−5, warm-up and linear decay scheduling. The online models were trained using AdamW with β1 = 0.9, β2 = 0.999
and weight decay 0.01. The hyperparameters values described in the method section are: α = 0.1, Kl = 750, Kη,min =
1.5×10−4 Kη,max = 6×10−5, Kl,min = 187, Kl,max = 562, KCM,min = 0.5, KCM,max = 0.75 and m = 75. For the storm
and fog scenarios we use: Bsource = 0.8, Bhard = 2.55. For the SHIFT dataset [6], we use Bsource = 0.46, Bhard = 1.85 and
m = 200. For the video sequences, we use the fog and storm parameters with m = 350. We also used 1000 source images as
a buffer. All models performed training with a batch size of 1 and images scaled to 512×1024 resolution and random crops
of 512 × 512 where using for training. Both in HAMLET and in the full training baseline we employ SegFormer decoder,
without using DAFormer [3] custom head. It’s also worth noting that, to marginalize the impact of different backbones,
all tested models in this work are using SegFormer MiT-b1 backbone (i.e. HAMLET, TENT, CoTTA) as model backbone,
except if specified otherwise (i.e. OnDA and Advent [7] are using DeepLabV2 [1]).

During training (evaluation is included), HAMLET consists of the following forward passes:

• Student model using source buffer image

• Static teacher encoder using source buffer image (no decoder)

• EMA teacher using a target image

• Student model using mixed image

• Student model using a target image to provide a prediction

• First module of static teacher in the target image and relative small decoder
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Figure 4: Experimental results – Storms A, B, C. Adaptation performance by two HAMLET instances, one trained on
source domain (clear) and adapted for the first time, and one that has been pre-adapted on the Increasing Storm. In the last
two rows, we show the boost in accuracy achieved by the latter model compared to the former, as well as the iterations during
which the two are optimized (orange: the former only, blue: the latter only, gray: both).

clear 50mm 10mm 200mm h-mean FPS GFLOPS
F B F B F B F B F B T

Full training 73.6 73.0 69.3 70.1 66.6 66.4 61.4 62.8 67.4 67.9 67.6 4.6 125.2
HAMLET (non pre-adapted) 73.4 71.8 68.3 68.8 63.5 64.6 57.1 58.2 65.0 65.4 65.2 22.8 58.2
HAMLET (pre-adapted) 71.9 72.1 69.4 69.4 65.8 64.6 58.1 59.8 65.9 66.1 66.0 20.2 59.8

Table 4: Experimental results – Storm A

Backpropagation is applied on the student model only. Afterwards, the dynamic teacher is updated as EMA of the student.
During simple evaluation, HAMLET consists of the following forward passes:

• Student model using a target image to provide a prediction

• First module of static teacher in the target image and relative small decoder

The full source code used for our experiments is attached to this document (hamlet code.zip).

6. More storms and longer adaptation analysis
We run HAMLET on three additional rainy scenarios, generated as detailed in [5]. We both evaluate the performance

of the brand-new adaptation cycle, starting from SegFormer trained on source domain and adapting to the new storms A, B
and C. Additionally, we test a model previously online adapted on the Increasing Storm scenario and compare the two (Non
Pre-Adapted and Pre-Adapted) in terms of performance and training phases.

Figure 4 collects, from left to right, the results achieved on Storms A, B, and C as defined in [5]. On top, we plot the rain
intensity over time faced during the adaptation process, followed by mIoU plots highlighting how the two models introduced
before adapt and the difference in terms of mIoU achieved by the pre-adapted model compared to the brand-new one. On the
last row, we show the iterations during which the models are optimized, specifically in gray when both run back-propagation,
while in orange and blue when only the brand-new or the pre-adapted model are optimized, respectively.

We notice, similarly to OnDA [5], how HAMLET also benefits from previous adaptation on the Increasing Storm. The
highest gain is achieved on Storm C, in which the domain rapidly switches from source to the hardest one, i.e. 200mm.
Moreover, we can appreciate in general how the pre-adapted model witnessed almost no drop in accuracy on the inactive
domains. This is caused by the Active Training Modulation strategy, which limits the amount of adaptation steps performed



clear 25mm 100mm 200mm 50mm 25mm 2 clear 2 total h-mean FPS GFLOPS

Full training 73.3 70.6 68.2 64.1 66.1 70.9 72.1 69.2 4.6 125.2
HAMLET (non pre-adapted) 73.4 70.0 67.4 61.6 61.5 68.8 70.6 67.3 20.0 50.3
HAMLET (pre-adapted) 71.9 70.0 67.8 62.5 63.0 67.7 69.9 67.4 25.2 44.9

Table 5: Experimental results – Storm B

clear 1 200mm clear 2 100mm clear 3 75mm clear 4 clear h-mean target h-mean total h-mean FPS GFLOPS

Full training 73.6 60.1 73.4 65.6 73.0 68.8 72.9 73.2 64.6 69.3 4.5 125.2
HAMLET (non pre-adapted) 73.4 54.4 72.7 64.7 71.0 65.7 71.4 72.1 61.1 67.0 16.4 51.9
HAMLET (pre-adapted) 71.9 59.5 72.9 65.7 72.2 68.6 72.0 72.3 64.4 68.7 22.2 48.3

Table 6: Experimental results – Storm C
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Figure 5: Experimental results – SHIFT benchmark. We show mIoU over active (bold) and inactive (dashed) domains,
learning rate and FPS.

by HAMLET to be as few as needed to adapt to the new domains while neglecting the occurrence of catastrophic forgetting
over inactive domains. Indeed, once adaptation has been performed over the Increasing Storm, it results sufficient to maintain
high accuracy when moving to the new storms, as pointed out by the almost horizontal dashed lines in the pre-adapted plots.
By focusing on the last row, we point out how, in most times, the non pre-adapted model runs significantly more optimization
steps (orange) compared to the pre-adapted one (blue), which can already deal with the domain switches occurring in these
storms. This is due to its prior experience on the Increasing Storm, indeed the domain detection relies both on the static
lightweight decoder and the student itself. When the student becomes more robust to new domains, also the domain detection
becomes more accurate. We also notice how, despite training only a fraction of the iterations, the Non Pre-adapted model can
still catch-up with the pre-adapted one, with a delay, even in the hardest transition, i.e. storm C. For a quantitative overview
of HAMLET performance on the three storms, we collect the results in Tables 4, 5 and 6, respectively for Storms A, B, and
C. In particular, we point out how the pre-adapted model is more accurate, as well as faster than the non pre-adapted one on
B and C, since it activates adaptation fewer times as previously discussed with reference to Figure 4.

To conclude, HAMLET can benefit from previous adaptation both in terms of accuracy, as well as speed (the fewer the
optimization steps, the higher the framerate).
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Figure 6: Experimental results – SHIFT benchmark. We show the mIoU of the heavy rain domain during the training
cycle for Full training and HAMLET. Bold lines represent when the domain is active and dashed lines when is inactive.

clean 50mm 100mm 200mm

Figure 7: Qualitative results – HAMLET in action. From left to right, we show the same source frame, augmented with
increasing rain intensity, respectively clean, 50mm, 100mm and 200m. From top to bottom: input image, prediction by
SegFormer trained on source and HAMLET.

7. SHIFT analysis
We now dive deeper in HAMLET performance on the SHIFT benchmark. Figure 5 depicts, on top, the rain intensity

characterizing any domain encountered while running HAMLET on SHIFT. Then, we plot the mIoU achieved both on
current (bold) and inactive (dashed) domains, as done for the Increasing Storm in the main paper and Storms A, B, C in
the previous section. Then, we show how the learning rate changes based on the domain shift detection, followed by the
framerate achieved by HAMLET at any step.

From the mIoU plot, we can notice how the drop in accuracy, even on the hardest domain, is moderate compared to what
was observed in OnDA benchmarks [5]. We speculate that this might be caused by the full-synthetic nature of this domain,
which makes the task easier. Interestingly, the performance on small rain and mid rain domains continue to improve even
after HAMLET moves to further domains. In general, as previously observed on Storms A, B, C, HAMLET do not experience
any catastrophic forgetting on the inactive domains that have been faced previously. For what concerns domain shift detection,
we can notice how this sometimes occurs with a slight delay – i.e. clear to cloudy and vice-versa – or does not occur at all
– i.e. overcast to small rain and vice-versa. Nevertheless, once again, this confirms that just a few adaptation steps aligned
with the domain shifts are enough to achieve an accuracy comparable to the one obtained with full training, as shown in Tab.
4 in the main paper.

This dataset evaluation offers further insights when it comes to observing another problematic behavior of naı̈ve full



0
75

200

in
te

ns
ity

0

2

4

H

0

3
A

0

2

B

0 5000 10000 15000 20000 25000 30000 35000
Step

0

1

tra
in

in
g

Figure 8: HAMLET adaptation schedule over the qualitative video sequence. From first to last row we present: rain
intensity, domain detection signals: H,A,B, training phases (1: training + inference, 0: inference)

training. Indeed, besides being vastly more computationally expensive, training when it is not required, contributes to the
futile specialization of specific domains, hence leading to worse generalization on other domains. This is clearly visible in
Figure 6 when we focus on the performances of our Full Training baseline on the heavy rain domain. During the adaptation
to clear weather, we notice how evaluating on heavy rain leads to progressively worse performances without achieving any
significant improvement in clear weather either. Despite its ability to eventually adapt, this behavior might raise concerns
when it comes to sudden domain shifts and it hints to potential domain forgetting. To support this, we show in Figure 6 the
accuracy achieved on the heavy rain domain at any time during adaptation, when being the active (bold) or inactive (dashed)
domain, for both SegFormer adapted with full training and HAMLET. We can notice how the full training regime leads to
dramatic drops in accuracy on this domain when it is inactive, until it is actually encountered. HAMLET, on the contrary,
can preserve its original accuracy on the heavy rain, proving that selective adaptation also avoids catastrophic forgetting, to
which full training is prone to.

8. Qualitatives
In Figure 7 we present extensive qualitative examples from the Increasing Storm evaluation set. Figure 7 shows the results

achieved by the source model and HAMLET on increasing rain intensity. We can notice how the source model, at first, is
robust to moderate rain. When moving towards higher intensity, the model gradually starts failing, whereas HAMLET keeps
high accuracy.

9. Videos
To conclude, we attach two qualitative videos to this document. For the first (https://www.youtube.com/watch?

v=zjxPbCphPDE&t=139s) we emulate a realistic deployment by synthesizing rain over Cityscapes. The domain shift
sequence follows the same pattern as the Increasing Storm. In this case, we cap the video framerate at 5.88FPS using the
same setup of [5]. On this video, we run SegFormer in three main flavors: 1) trained on source domain, 2) adapting using
CoTTA and 3) adapting with HAMLET. We mainly compare against CoTTA: while HAMLET keeps the pace with the
considered framerate, CoTTA – which runs at 0.6FPS – is trained over 1 frame every 10, allowing it to keep the pace with the

https://www.youtube.com/watch?v=zjxPbCphPDE&t=139s
https://www.youtube.com/watch?v=zjxPbCphPDE&t=139s
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Figure 9: HAMLET adaptation schedule over the qualitative video sequence. From first to last row we present: learning
rate schedule, domain detection signal B, training phases (1: training + inference, 0: inference)

incoming frames. This emulates a realistic behavior during deployment in which all the frames are processed sequentially,
yet favoring CoTTA – since a higher framerate, e.g. 30FPS, would require CoTTA to adapt on even fewer frames to keep
the pace. The video sequence is unlabelled, so we cannot compute mIoU and thus we can appreciate our results only
qualitatively, nevertheless, we can provide an overview of the adaptation process operated by HAMLET. Figure 8 sketches
the domain sequence, domain shift detections, and relative training intervals, i.e. 1 when training is active and 0 otherwise.
The average speed theoretically obtained by HAMLET in this sequence is 20.4FPS, even though the input rate was capped
at 5.88FPS. It is also interesting to notice how sequential frames and underlying natural domain shifts taking place over the
video are making the adaptation task significantly more challenging than the Increasing Storm benchmark proposed in [5],
nevertheless, HAMLET manages to identify and activate short training burst in correspondence to the domain shifts, enough
to vouch for effective adaptation to the new domains encountered.

In the second video (https://www.youtube.com/watch?v=zjxPbCphPDE) we showcase HAMLET in action
in a real environment – i.e., on the road from Seoul to Daegu, Korea. During the trip, we face several different domain
transitions, meeting heavy rain, highway environment, dusk, and even nighttime. This latter qualitative result proves that,
despite most experiments in the main paper having been conducted in semi-synthetic datasets, HAMLET is effective on
real data as well and can be effectively deployed for real applications. The video shows, on top, the input RGB images
from the sequence being processed, and at the bottom, the results by SegFormer trained on the source domain (left) and
HAMLET being adapted on the sequence itself (right). First and foremost, we point out how the video itself exposes several
domain shifts due to the environment itself – i.e., SegFormer has been trained on Cityscapes, featuring cities from Germany
in a mostly urban environment, while the whole video features Korea and transits from urban roads to highways. We can
appreciate how these domain shifts do not represent a challenge for HAMLET. Then, we observe that rain represents one of
the earliest, weather challenges faced in the video, both in the form of small droplets on the glass shield of the car, as well as
in actual storms met during driving. While the accuracy of the source SegFormer model dramatically drops in these domains,
HAMLET rapidly copes with them and maintains a much higher quality of the results. In the last part of the video, we
encounter nighttime domains: despite the much lower brightness in the images and the lower contrast between the different
regions (e.g., road vs vegetation or cars), HAMLET can still keep the drop in accuracy moderate, while the source SegFormer
model results completely ineffective on such an unseen domain, rarely distinguishing the road from any generic vehicle. Fig.
9 sketches the domain shift detections and relative learning rate schedules, training intervals, i.e. 1 when training is active
and 0 otherwise. We can observe how HAMLET can identify several domain shifts and tune the adaptation rate accordingly.

https://www.youtube.com/watch?v=zjxPbCphPDE
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