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1. More Training / Inference Details

The base learning rates for the feature extraction net-
work and GNT-MOVE are 10−3 and 5 × 10−4, respec-
tively, which decay exponentially over training steps. For
the zero-shot generalization experiments, we train the net-
work for 330,000 steps with 4096 rays sampled from 4 dif-
ferent views in each iteration. In the few-shot setting, we
further fine-tune the pretrained model on each scene for
2,4000 steps. During the inference, we sample 192 coarse
points per ray in all experiments.

2. Cross-Scene Generalization

2.1. Testing Datasets

Local Light Field Fusion (LLFF) [2] consists of 8
forward-facing captures of real-world scenes using a smart-
phone. NeRF Synthetic dataset [3] consists of 8, 360◦

scenes of objects with complicated geometry and realis-
tic material. Each scene consists of images rendered from
viewpoints randomly sampled on a hemisphere around the
object. Shiny-6 dataset [6] contains 8 forward-facing scenes
with challenging view-dependent optical effects, such as the
rainbow reflections on a CD, and the refraction through liq-
uid bottles. Tanks-and-Temples [5] is a complex outdoor
dataset and contains large unbounded scenes. Following
NeRF++, we evaluate on four scenes, including M60, Train,
Truck, and Playground, and use the same evaluate views as
NeRF++ does. NMR [1] contains 360° views of various ob-
jects from unseen categories, which could be downloaded
from NMR Dataset.zip1 (hosted by the authors of Differ-
entiable Volumetric Rendering [4]). In the main paper, we
report the average metrics across all eight scenes on each
dataset for cross-scene generalization experiments.

*Equal contribution.
1https://s3.eu-central-1.amazonaws.com/avg-

projects/differentiable volumetric rendering/data/NMR Dataset.zip

2.2. Per-Scene Breakdown Results for Zero-Shot
Generalization

To better demonstrate the effectiveness of our cus-
tomized MoE, in Table 1 and Table 2, we pick few repre-
sentative scenes for breakdown analysis of both GNT’s and
GNT-MOVE’s quantitative results presented in Table 1a in
the main paper. The scenes we choose mainly cover the
complex geometries (e.g., leaves and orchids) and materials
(e.g., room and materials). In both tables, our GNT-MOVE
outperforms GNT by a significant margin in most scenes
and achieves comparable results in the rest ones, demon-
strating that with necessary customizations, MoE could be
a strong tool to push the frontier of generalizable NeRF.

It is also worth mentioning that in Table 2, our GNT-
MOVE has demonstrated superior performance, especially
in scenes with complex materials (e.g., Drums, Materials,
Ship), showing that the customized MoE further enables
cross-scene NeRF to generalize to difficult scenarios.

2.3. More Expert Selection Analyses

In Figure 1, we visualize more unseen scene rendering
results and also the corresponding expert selections in the
format of expert maps. It can be observed that our cus-
tomized MoE is not only capable of keeping consistent se-
lection across scenes (e.g., white background in the left
three scenes, leaves in the right two scenes), but also re-
acts properly to complex lighting effects and materials (e.g.,
sparkling water in the left bottom scene Ship).

3. More Comparison: GNT v.s. GNT-MOVE

While the model size/speed is indeed not the main fo-
cus in this paper, GNT-MoE does generalize better, than the
non-MoE counterpart with even heavier parameterization,
while keeping per-instance inference low-cost.

Below, ▷ 1) and ▷ 2) demonstrate that the solid gain
of MoE for generalizable NeRF goes way beyond naively
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Figure 1: Results of unseen scene rendering and visualization of expert selection using different colors.

Models Room Leaves Orchids Flower T-Rex Horns

GNT 29.63 19.98 18.84 25.86 24.56 26.34
Ours 29.94 20.45 19.38 27.04 24.58 26.87

(a) PSNR↑
Models Room Leaves Orchids Flower T-Rex Horns

GNT 0.940 0.756 0.661 0.859 0.885 0.892
Ours 0.946 0.770 0.668 0.871 0.878 0.894

(b) SSIM↑
Models Room Leaves Orchids Flower T-Rex Horns

GNT 0.091 0.183 0.216 0.108 0.127 0.118
Ours 0.087 0.173 0.209 0.101 0.123 0.113

(c) LPIPS↓
Models Room Leaves Orchids Flower T-Rex Horns

GNT 0.031 0.097 0.119 0.048 0.054 0.046
Ours 0.029 0.093 0.115 0.043 0.054 0.044

(d) Avg↓

Table 1: Comparison between our GNT-MOVE and GNT
for cross-scene generalization under zero-shot setting on the
LLFF Dataset (scene-wise).

larger model size; and ▷ 3) demonstrates that the gain can
only be unleashed with PE and SR. Detailed results could
be found in Table 3. As preliminary, every expert in GNT-
MOVE is half the size of GNT’s same layer. The default
GNT-MOVE (row 4) selects E = 2 such experts from K = 4
candidates, plus 1 permanent expert. Hence, if we treat the
total parameter and inference FLOPs of GNT both as unit
(“1”), then the default GNT-MOVE has “2.5” total param-
eter and “1.5” inference FLOPs. We construct the following
comparison groups:

▷ 1) the same FLOPs at inference. Rows 1-2 com-

Models Chair Drums Materials Mic Ship

GNT 29.17 22.83 23.80 29.61 25.99
Ours 29.64 23.19 24.16 30.30 26.48

(a) PSNR↑
Models Chair Drums Materials Mic Ship

GNT 0.959 0.927 0.931 0.977 0.836
Ours 0.962 0.979 0.935 0.982 0.845

(b) SSIM↑
Models Chair Drums Materials Mic Ship

GNT 0.038 0.059 0.058 0.017 0.154
Ours 0.038 0.057 0.056 0.015 0.149

(c) LPIPS↓
Models Chair Drums Materials Mic Ship

GNT 0.021 0.044 0.040 0.014 0.054
Ours 0.021 0.042 0.040 0.013 0.051

(d) Avg↓

Table 2: Comparison between our GNT-MOVE and GNT
for cross-scene generalization under zero-shot setting on the
NeRF Synthetic Dataset (scene-wise).

pare GNT (FLOPs “1”) versus GNT-MOVE using only one
selectable expert (E = 1) + one PE (0.5 + 0.5 = “1”). De-
spite the same inference complexity, the extra flexibility to
“select” endows GNT-MOVE with superior performance.

▷ 2) the same total parameter. Row 3 widens GNT
by 2.5 times to match the total parameter size “2.5” of
GNT-MOVE, called “GNT (Large)”. Compared to Row 4
(default GNT-MOVE), they have the same total parameter
counts; meanwhile, GNT-MOVE has smaller per-inference
FLOPs. However, GNT (Large) performs worse - and that
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PSNR↑ SSIM↑ LPIPS↓ Avg↓ PSNR↑ SSIM↑ LPIPS↓ Avg↓ PSNR↑ SSIM↑ LPIPS↓

GNT 25.86 0.867 0.116 0.047 27.29 0.937 0.056 0.030 17.39 0.561 0.429
GNT-MOVE (E=1, K=4, w. PE) 25.94 0.868 0.111 0.043 27.43 0.939 0.057 0.029 19.08 0.611 0.393

GNT (Large) 25.89 0.867 0.113 0.046 27.37 0.936 0.058 0.033 18.26 0.579 0.405
GNT-MOVE (E=2, K=4, w. PE) 26.02 0.869 0.108 0.043 27.47 0.940 0.056 0.029 19.71 0.628 0.379
GNT-MOVE w.o. PE (E=3, K=5) 25.81 0.867 0.114 0.047 27.32 0.933 0.059 0.031 18.11 0.570 0.414

Table 3: Comparisons to illustrate the solid gain of MoE and PE in GNT-MOVE.

clearly indicates for generalizable NeRF, “the more param-
eter the better” is NOT the right quote, and per-scene spe-
cialization is necessary.

▷ 3) Does PE undermine MoE claim? NO. First, the
above two points already justified the necessity of MoE and
disapprove “natural to have better performance with more
parameters”. Second, our core claim is NEVER “MoE shall
work out of box for NeRF”. Instead, while MoE is promis-
ing to balance “generality” and “specialization”, making it
work for generalizable NeRF demands customized tactics
to inject the key priors of cross-view consistency & cross-
scene commodity - PE is one such tactic.

To explain the second note, we stress that learning MoEs
over NeRFs differs greatly from over standard image sets.
If treating each view observation as an image sample, a
“NeRF dataset” would exhibit significant clustering due
to different views of the same scene, and even different
scenes will bear natural scene similarity. The highly non-
i.i.d distribution, with multi-dimensional similarity entan-
gled across views and scenes, can make naive MoE training
more prone to collapse - see our ablation in Supplement sec.
3. Our important contribution is to show one can reap the
benefit of MoE with proper regularizations including PE.

To directly show PE values beyond just “more parame-
ters”, we compare Row 5 in Table (replacing GNT-MOVE’s
PE with a selectable expert, and making E = 3), which has
same total parameter & inference FLOPs with our default
GNT-MOVE setting (Row 4). Having PE helps evidently.
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