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1. Dataset and Experimental Setup

In this section, we describe more details of datasets and
experimental setups for three image restoration tasks. Un-
less specified here, the hyper-parameters mentioned in the
main text are adopted.

Image Dehazing. We evaluate the proposed network on
both daytime and nighttime datasets. The daytime datasets
include both synthetic (RESIDE [10]) and real-world (NH-
HAZE [3], Dense-Haze [2], O-HAZE [4]) datasets.

The RESIDE [10] dataset contains two training sub-
sets, i.e., indoor training set (ITS) and outdoor training set
(OTS). ITS consists of 13990 hazy images generated from
1399 sharp images. OTS comprises 313950 hazy images
produced from 8970 clean images. RESIDE [10] contains
a testing subset, i.e., synthetic objective testing set (SOTS),
which is composed of indoor and outdoor scenes, each in-
cluding 500 hazy images. We evaluate the ITS-trained and
OTS-trained models on SOTS-Indoor and SOTS-Outdoor
datasets, respectively. The model is trained for 30 epochs
on RESIDE-Outdoor with initial learning rate as 1e−4 and
batch size as 8. On RESIDE-Indoor, the model is trained
for 1000 epochs.

NH-HAZE [3] and Dense-Haze [2] both consist of 55
paired images, while O-HAZE [4] contains only 45 image
pairs. For these real-world datasets, models are trained for
5000 epochs following [8] on 800× 1200 patches with ini-
tial learning rate as 2e−4 and batch size as 2.

The nighttime dataset NHR [27] contains 16146 and
1794 image pairs for training and evaluation, respectively.
The model is trained for 300 epochs with initial learning
rate as 1e−4 and batch size as 8.

Image Desnowing. Snow100K [14], SRRS [5], and
CSD [6] contain 50000, 15005, and 8000 image pairs for
training, and 50000, 15005, and 2000 images for evalua-
tion, respectively. Models are trained for 2000 epochs.

Single-Image Defocus Deblurring. As in previous
methods [9, 21, 25], we choose the DPDD [1] dataset to
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Method PSNR SSIM Time/s Params/M Memory/G

MPRNet [26] 32.66 0.959 1.148 20.1 10.415
MIMOUNet++ [7] 32.68 0.959 1.277 16.1 10.395
Restormer [25] 32.92 0.961 1.218 26.13 12.333
Stripformer [23] 33.08 0.962 1.054 20.0 12.149

Ours 33.10 0.962 0.270 15.85 2.417

Table 1. Comparisons on the GoPro [18] test set for image
motion deblurring. The inference time is measured by using
torch.cuda.synchronize() on an NVIDIA Tesla V100 GPU.

NLRN DeamNet DAGL SwinIR Restormer
Method [12] [20] [17] [11] [25] Ours

σ=15 31.88 31.91 31.93 31.97 31.96 31.97
σ=25 29.41 29.44 29.46 29.50 29.52 29.53
σ=50 26.47 26.54 26.51 26.58 26.62 26.65

GFLOPs - 146 256 759 141 143

Table 2. Gaussian grayscale image denoising results on the
BSD68 [16] dataset.

demonstrate the efficacy of our method. We adopt the train-
ing strategy in [21] to train our model.

2. More Experimental Results
2.1. Image Motion Deblurring

For this task, we train and evaluate our model on the
widely used GoPro [18] dataset with the initial learning rate
as 1e−4 and batch size as 4. The model is trained for 3000
epochs. We deploy 20 residual blocks in each ResBlock.
The results are presented in Table 1. Compared with other
competitors, our method achieves a better trade-off between
computation overhead and performance.

2.2. Image Denoising

We present the grayscale image denoising results in Ta-
ble 2. The model is trained for 100 epochs on the same
dataset as Restormer [10] and tested on BSD68 [16]. The
initial learning rate is set as 1e−4 and batch size as 16.



Method SSM SSM*2 FSM FSM*2 SSM+FSM

PSNR 33.71 34.97 32.60 32.73 35.60

Table 3. Design choices of DSM. SSM*2 means we use two SSM
successively.

Method PSNR Params/M

Share 35.26 1.46
Ours 35.60 1.47

Table 4. Design choices of MResBlock. Share means the convolu-
tion parameters are shared among two branches.

We employ 24 residual block in each ResBlock to have the
comparable complexity with other algorithms [25, 20]. As
shown in the table, our CNN-based method outperforms the
strong Transformer model Restormer [25] for all noise lev-
els.

3. More Ablation Studies

The experimental settings remain identical with that of
the ablation study section in the main text.

Design Choices of DSM. We conduct experiments by
using different combinations of SSM and FSM. As shown in
Table 3, deploying two identical modules successively, the
models obtain better performance than that of using single
one. Our choice, employing dual-domain selection mecha-
nism, produces the best performance.

In addition, we provide visualization comparisons be-
tween different designs to demonstrate the superiority of our
method. As illustrate in Figure 1, using two SSM, the model
focuses on degradation regions. The version with two FSM
pays attention to edge signals. Our method only empha-
sizes signals that are difficult to recover, which facilitates
high efficiency of our model.

Design Choices of MResBlock. In MResBlock, we split
features and treat each component individually. During
this process, convolution layers can be shared among two
branches or not. As shown in Table 4, sharing parameters
degrades performance by 0.34 dB. Therefore, we use sepa-
rate convolutions in two branches for better performance.

More Visual Examples of DSM. Figure 2 and Figure 3
illustrate the effects of our DSM for defocus deblurring and
desnowing, respectively. As shown in Figure 2, our spa-
tial selection module (SSM) suppresses the simple regions,
such as the trunk in the top image and the left stone in
the bottom image. Our frequency selection module (FSM)
highlights the edge information as marked by red arrows.
The same conclusion can also be drawn for desnowing in
Figure 3. Our modules accentuate the complicated build-
ings while attenuating the simple regions such as the sky.

4. More Visual Results

In this section, we provide more visual comparisons for
three tasks: defocus deblurring (Figure 4), dehazing (Fig-
ure 5 and 6), and desnowing (Figure 7). The images pro-
duced by our models are visually closer to the ground-truth
than those of other approches.
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Figure 1. Comparisons between different designs of DSM. Images are obtained from SOTS-Indoor [10] dataset.
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Figure 2. Effectiveness of our DSM on defocus deblurring. Images are obtained from DPPD [1] dataset.Blurry Image Target Initial Feature w/ SSM w/ SSM&FSM
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Figure 3. Effectiveness of our DSM on desnowing. Images are obtained from CSD [6] dataset.
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Figure 4. Single-image defocus deblurring comparisons on the DPDD [1] dataset.
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Figure 5. Image dehazing comparisons on the Dense-Haze [2] dataset.
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Figure 6. Image dehazing comparisons on the SOTS-Indoor [10] testset.
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Figure 7. Image desnowing comparisons on the CSD [6] dataset.

2642–2650, 2021.
[23] Fu-Jen Tsai, Yan-Tsung Peng, Yen-Yu Lin, Chung-Chi Tsai,

and Chia-Wen Lin. Stripformer: Strip transformer for fast
image deblurring. In European Conference on Computer Vi-
sion, pages 146–162, 2022.

[24] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang,
Peyman Milanfar, Alan Bovik, and Yinxiao Li. Maxim:
Multi-axis mlp for image processing. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 5769–5780, 2022.

[25] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 5728–5739,
2022.

[26] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar
Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling
Shao. Multi-stage progressive image restoration. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 14821–14831, 2021.

[27] Jing Zhang, Yang Cao, Zheng-Jun Zha, and Dacheng Tao.
Nighttime dehazing with a synthetic benchmark. In Proceed-
ings of the ACM International Conference on Multimedia,
pages 2355–2363, 2020.


