
Appendix

In this appendix, we first present additional details for
the collection of GEL-R2R in Sec. A. And then we provide
the implementation details of the pre-trained model in Sec.
B. Finally, we compare several qualitative examples of our
GELA model and the HAMT [3] baseline in Sec. C.

A. Data Collection Pipeline

A.1. Raw Data Preparation.

Our grounded entity-landmark annotations are based on
the Room-to-Room (R2R) [1] dataset. For each navigation
trajectory from R2R, we collect a sequence of 360-degree
panoramas with an image size of 2048×1024 from Matter-
port3D simulator [2]. Additionally, we employ two skills in
the preparation of raw data to increase the effectiveness and
efficiency of entity-landmark grounding annotation. The
first skill is turning each panorama so that the direction of
the subsequent action heading is in the center of the image
and marking the direction using the red arrow, as shown
in Figure 1. Due to the fact that most landmarks are lo-
cated near the direction of the next action, this skill might
improve the speed with which the annotators identify the
landmarks and reduce the phenomenon whereby landmarks
are divided by the edge. The second skill is utilizing align-
ment information of sub-instructions and sub-trajectories
modified from FG-R2R [8], where a sub-instruction may
sometimes incorrectly match a viewpoint rather than a sub-
trajectory. As presented in Figure 1, “Turn left and exit out
the door beside the TV to the left” is the first sub-instruction
of the overall instruction, and the following two panoramas
are the visual observations of the agent at two viewpoints
of the corresponding sub-trajectory. As a result, rather than
having to search through every panorama along the path, an-
notators only need to find effective landmarks in the several
corresponding panoramas.

A.2. Annotation Tool Development.

To facilitate the human annotations of entity-landmark
grounding, we develop a convenient web-based tool. Based
on the label-studio platform, we design an annotator-friend
interface targeted to our task, as presented in Figure 1.
Black on the top line is a complete instruction, which con-
sists of several sub-instructions. Firstly, the annotators can
choose a pair of sub-instruction and sub-trajectory (sub-
pair) to be marked sequentially. After a sub-pair is selected,
the annotators should mark the entity words or phrases in
the sub-instruction using different color labels, then mark
the matched landmarks in the panoramas using the corre-
sponding color bounding boxes. After marking all sub-
pairs, the annotators submit the annotations of this episode
and mark the next episode.

Figure 1. The designed interface for entity-landmark grounding
annotation. Black on the first line is the complete instruction.
The several sub-pairs to be annotated are selected by “□ #”. The
matched pair of the entity phrase and the landmark bounding box
are marked with the same color label. The red arrow in the center
of the panoramas denotes the next action direction.

A.3. Annotation Guideline Standardization.

In the data collection, five individuals with prior experi-
ence in visual grounding research served as our experts. Af-
ter building the annotation tool, we adopt the pre-annotation
to optimize our tool and standardize the annotation pro-
cess. In the pre-annotation stage, our experts annotate 300
instruction-trajectory pairs together as examples and estab-
lish an annotation guideline and several rules based on their
consensus after several discussions. Four rules are sug-
gested to ensure the standardization of the annotation pro-
cess.

• Alignment Rule: The entity phrase in the instruction
should match the landmark panorama accurately.

• Free Text Rule: Free text instead of the class should
be annotated, for instance, “the white dining table” in-
stead of “table”.

• Text Coreference Rule: The entity phrases referring



to the same object are marked with the same label.
• Unique Landmark Rule: For an entity phrase, only

one corresponding landmark bounding box should be
annotated in a panorama.

A.4. Data Annotation and Revision.

We first recruit 100 college students to annotate our
dataset. Before starting our task, the students are asked to
read the guideline and rules of the annotation carefully and
attempt to annotate 50 instruction-trajectory pairs. Then we
examine each annotated pair if the annotations highly agree
with the four rules and reject participators with a low agree-
ment. The qualification process leaves us with 43 qualified
annotators to complete the annotation task. After an anno-
tator finishes the annotations, our experts verify the annota-
tions again and modify the inaccurate part to ensure that the
annotations satisfy the four rules. In total, the annotation
task costs more than 2000 hours and the revision task costs
more than 1000 hours.

A.5. Data Processing.

To ensure annotation quality, we first reject the wrong
annotations, i.e., alone entity annotations or landmark an-
notations, and then revise some wrong words in text anno-
tations. Due to sub-pairs being annotated, the obtained posi-
tions of entity phrases are based on the sub-instructions. So
we need to transfer the positions to the corresponding posi-
tions in the global instruction. On the other hand, we need
to transfer the coordinates of the annotated bounding box
to the corresponding coordinates in the panorama starting
with 0 degrees. Finally, we combine the grounded entity-
landmark annotations with the R2R dataset, obtaining the
Grounded Entity-Landmark R2R (GEL-R2R) dataset.

B. Pre-trained Model
We adopt HAMT [3] as our per-trained model, which

achieves the SoTA results in many VLN downstream bench-
marks. Modified from the classical cross-modal model
LXMERT [12], the HAMT inherits the fully transformer-
based architecture. On the other hand, the HAMT designs
a new hierarchical encoder to process history visual obser-
vations, which is considered important for decision-making
in the long trajectory. Otherwise, to learn more effective
initialization for VLN downstream tasks, the model is first
pre-trained with several proxy tasks.

B.1. Model Architecture.

The architecture of the pre-trained model is illustrated
in Sec. 4.2. The pre-trained model takes three inputs:
a navigation instruction I , history information Ht, and
current panoramic visual observation Ot. I is tokenized
by using WordPieces first, and then feed into the lan-

guage encoder, which is a multi-layer self-attention trans-
former following the standard BERT, to get a sequence
word representation. Ht consists of all the past panoramic
observations {o0,i, . . . , ot−1,i}36i=1 and performed actions
{act0, . . . , actt−1}. This historic information is input
into a history encoder, which has spatial encoding lay-
ers and temporal encoding layers. The spatiotemporal
hierarchical encoder effectively represents history infor-
mation as {hcls, h0, . . . , ht−1}, where hcls is to learn a
global hidden vector. Ot consists of image observa-
tions vt,i and orientation angle at,i. The pre-trained ViT
[5] models encode vt,i as a 768-dimensional feature vec-
tor, which is concatenated with orientation embedding
(sin θt,i, cos θt,i, sinϕt,i, cosϕt,i) to obtain the current vi-
sual state representation. And then cross-modal encoder,
composed of self-attention layers and cross-attention lay-
ers, jointly encodes the features from the language and
vision modality. Specifically, the visual modality is the
concatenation of history and visual observation. As a re-
sult, the different modalities exchange the signals through
cross-attention layers and align the token embedding with
the same semantic information. Finally, the representa-
tions of tokens in instruction, history, and visual state are
Z = {zcls, z1, · · · , zT }, Ht = {hcls, h1, · · · , ht−1}, St =
{s1, · · · , s36, sstop } respectively.

B.2. Pre-training Tasks.

As studied in previous work, transformer-based models
in VLN are commonly pre-trained on the in-domain dataset
using several proxy tasks to learn a more effective initializa-
tion representation for uni-modal and multi-modal informa-
tion [7, 11, 3]. Common vision-language pre-training tasks
and the VLN-specific auxiliary tasks are typically served as
the proxy tasks. The HAMT model is pre-trained by five
proxy tasks as follows.

Masked Language Modeling (MLM) [4]. MLM is a
typical pre-training task for BERT-based models. In multi-
modal transformer-based architecture, the task predicts
masked words using surrounding words and image patches.
It can facilitate the learned word representations to be
grounded in the context of visual observations. Specifically,
with a probability of 15%, we mask out the input words
in the instruction I and replace them with a special token
[MASK]. Based on their contextual textual and visual rep-
resentations, the masked words are predicted via minimiz-
ing the negative log-likelihood of original words:

LMLM = − log p
(
wm | I\m, HT

)
, (1)

where I\m is the masked instruction, HT is the complete
trajectory.



Instruction: Walk up the steps and turn left. Stop just inside the fitness room. 
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Figure 2. Examples in R2R validation unseen split. The green arrow denotes the direction of the next action. Given the instruction on the
top line, GELA and HAMT navigate in an environment. In the first step, GELA chooses the true direction but the HAMT chooses the
wrong direction. The attention heatmaps at the last transformer layer in the cross-modal encoder are visualized above the panoramas of
step 1. In GELA, “the steps” attend to the patches of the corresponding landmark (the red bounding box), but “the steps” in HAMT attend
to other positions in the panorama. Therefore, recognizing “the steps” in step 1 helps GELA complete correct navigation.

Masked Region Classification (MRC) [9]. In analogy to
MLM, MRC predicts the semantic class of masked image
patches in the panorama based on instruction words and
surrounding visual observations. It improves the ability of
the model to understand the environments and match cross-
modal information. Specifically, we zero out image patches
in OT with the probability of 15% as input. For the output
embedding of masked patches, we predict the probability
distribution P ′

i on the 1000 classes of ImageNet. The ob-
jective is to minimize the KL divergence between P ′

i and

the supervisor Pi:

LMRC = −
1000∑
j=1

Pi,j logP
′
i,j , (2)

where Pi is the predicted probability distribution by pre-
trained ViT-B/16 [5].

Instruction Trajectory Matching (ITM) [10]. ITM is
a particularly designed task for VLN, which distinguishes
whether the input instruction-trajectory pairs match. It
helps the model to learn the global cross-modal alignment



Instruction: Go past the dink and out the door, towards the big sofa. Stop between the back of the sofa and the
white kitchen counter.
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Figure 3. Examples in R2R validation unseen split. Given the instruction on the top line, GELA and HAMT navigate in an environment.
GELA successfully reaches its destination. In the first three steps, HAMT chooses the right direction. However, in step 4, HAMT makes
an error. The attention heatmaps at the last transformer layer in the cross-modal encoder are visualized above the panoramas of step 4.
In GELA, “the white kitchen counter” attend to the patches of the corresponding landmark (the red bounding box). However, “the white
kitchen counter” in HAMT attend to another similar landmark in the panorama, which results in the wrong action.

between the instructions and the overall temporal visual tra-
jectory. Specifically, we sample four negative trajectories
during pre-training for every positive instruction-trajectory
pair. Two of the negative trajectories are chosen at random
from other positive pairs in the mini-batch, and the other
two are obtained by temporally rearranging the positive tra-
jectory. We optimize this task via a Noisy Contrastive Esti-

mation loss [6]:

LITM = − log
exp (g (I,HT ))

exp (g (I,HT )) +
∑4

k=1 exp
(
g
(
I,Hneg

T,k

)) ,
(3)

where g (I,HT ) is the global matching score of I and HT .

Single-step Action Prediction (SAP) [3]. SAP is a be-
havior cloning proxy task based on off-line expert demon-



strations, which makes the learned representations benefit
action decisions. The task predicts the next navigation ac-
tion using instruction, history observations, and the current
observation. Specifically, we apply a two-layer feedforward
network (FFN) to predict action probability for each navi-
gable view:

pt (s
′
i) =

exp (FFN (s′i ⊙ z′cls))∑
j exp

(
FFN

(
s′j ⊙ z′cls

)) , (4)

where ⊙ is element-wise multiplication and zcls is the out-
put embedding of the special token [CLS]. We optimize this
task by minimizing the negative log probability of the target
visual state:

LSAP = − log pt
(
s′t+1

)
. (5)

Spatial Relationship Prediction (SPREL) [3]. SPREL
is specially designed for spatial relations in navigation
tasks. The task enhances the competence of the agent to
identify directions by learning spatial relation aware repre-
sentations. We predict the relative spatial position of two
different views in a panorama only based on visual feature
vi, angle features ai, or both oi = [vi; ai]. Specifically, we
randomly zero out vi or ai of the two views with a probabil-
ity of 30%. The output embeddings of the two views are o′i
and o′j , and their relative heading and elevation angles are
θij , ϕij . Then we predict θ′ij , ϕ

′
ij = FFN

([
o′i; o

′
j

])
. We

optimize this task via minimizing

LSPREL =
(
θ′ij − θij

)2
+
(
ϕ′
ij − ϕij

)2
. (6)

C. Qualitative Examples
Figure 2 and Figure 3 show trajectories predicted by our

GELA model and compare them to results of the baseline
model HAMT [3]. We see that GELA could better recog-
nize the environment landmarks grounding the correspond-
ing entity phrases in instructions.
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